B2:GIẢI PT: A)(X-6)(X^2-4)=0 B)(2X+5)(4X^2-9)=0 C)(X-2)^2.(X-9)=0 D)X^2=2X E)X^2-2X+1=4 F)(X^2+1)(X-1)=0 G)4X^2+4X+1=0 H)X^2-5X+6 i)2X^2+3X+1=0 J)(2X-

B2:GIẢI PT:
A)(X-6)(X^2-4)=0
B)(2X+5)(4X^2-9)=0
C)(X-2)^2.(X-9)=0
D)X^2=2X
E)X^2-2X+1=4
F)(X^2+1)(X-1)=0
G)4X^2+4X+1=0
H)X^2-5X+6
i)2X^2+3X+1=0
J)(2X-3)(X+1)+X(X-2)=3(X+2)^2

0 bình luận về “B2:GIẢI PT: A)(X-6)(X^2-4)=0 B)(2X+5)(4X^2-9)=0 C)(X-2)^2.(X-9)=0 D)X^2=2X E)X^2-2X+1=4 F)(X^2+1)(X-1)=0 G)4X^2+4X+1=0 H)X^2-5X+6 i)2X^2+3X+1=0 J)(2X-”

  1. `a, (x-6)(x^2-4)=0`

    `⇔x=6` hoặc `x=+-2`

    `b, (2x+5)(4x^2-9)=0`

    `<=>x=-5/2` hoặc `x=+-3/2`

    `c, (x-2)^2 . (x-9)=0`

    `⇔x=2` hoặc `x=9`

    `d, x^2 = 2x` `⇔ x^2 – 2x = 0` `⇔ x(x -2)=0` `<=> x=0` hoặc `x=2`

    `e, x^2 – 2x + 1 = 4` `⇔ (x+1)^2 – 4 = 0` `⇔ (x-1)(x+3)=0` `⇔x=1` hoặc `x=-3`
    `f, (x^2 + 1)(x – 1)=0` `⇔ x=1`

    `g, 4x^2 + 4x + 1 = 0` `⇔ (2x + 1)^2 = 0` `⇔ x = -1/2`
    `h, x^2 – 5x + 6 = 0` `⇔ x^2 – 3x – 2x + 6 = 0` `⇔ (x-2)(x-3)=0` `⇔` `x=2` hoặc `x=3`

    `i, 2x^2 + 3x + 1 =0` `⇔(2x+1)(x+1)=0` `⇔x=-1/2` hoặc `x=-1`

    `j, (2x-3)(x+1)+x(x-2)=3(x+2)^2` `⇔2x^2 + 2x – 3x – 3 + x^2 – 2x – 3x^2 – 12x – 12=0` `⇔-15x – 15 = 0` `⇔x = -1`

    Vậy ………………………….

    Bình luận
  2. `a, (x-6)(x^2-4)=0`

    `⇔`\(\left[ \begin{array}{l}x-6=0\\x^2-4=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=6\\x=±2\end{array} \right.\)

    `b, (2x+5)(4x^2-9)=0`

    `⇔` \(\left[ \begin{array}{l}2x+5=0\\4x^2-9=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=\dfrac{-5}{2}\\x=±\dfrac{3}{2}\end{array} \right.\)

    `c, (x-2)^2 . (x-9)=0`

    `⇔`\(\left[ \begin{array}{l}(x-2)^2=0\\x-9=0\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=2\\x=9\end{array} \right.\)

    `d, x^2 = 2x`

    `⇔ x^2 – 2x = 0`

    `⇔ x(x -2)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\x-2=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=2\end{array} \right.\) 

    `e, x^2 – 2x + 1 = 4`

    `⇔ (x+1)^2 – 4 = 0`

    `⇔ (x + 1 – 2)(x + 1 + 2) =0`

    `⇔ (x-1)(x+3)=0`

    `⇔` \(\left[ \begin{array}{l}x-1=0\\x+3=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=1\\x=-3\end{array} \right.\) 

    `f, (x^2 + 1)(x – 1)=0`

    `⇔` \(\left[ \begin{array}{l}x^2+1=0\\x-1=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x^2=-1(loại)\\x=1\end{array} \right.\) 

    `g, 4x^2 + 4x + 1 = 0`

    `⇔ (2x + 1)^2 = 0`

    `⇔ 2x + 1 = 0`

    `⇔ x = -1/2`

    `h, x^2 – 5x + 6 = 0`

    `⇔ x^2 – 3x – 2x + 6 = 0`

    `⇔ x(x – 3) – 2(x-3) = 0`

    `⇔ (x-2)(x-3)=0`

    `⇔` \(\left[ \begin{array}{l}x-2=0\\x-3=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=2\\x=3\end{array} \right.\)

    `i, 2x^2 + 3x + 1 =0`

    `⇔ 2x^2 + x + 2x + 1 = 0`

    `⇔ 2x(x+1) + x +1 =0`

    `⇔(2x+1)(x+1)=0`

    `⇔` \(\left[ \begin{array}{l}2x+1=0\\x+1=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=\dfrac{-1}{2}\\x=-1\end{array} \right.\)

    `j, (2x-3)(x+1)+x(x-2)=3(x+2)^2`

    `⇔ 2x^2 +2x-3x-3+x^2-2x-3(x^2+4x+4)=0`

    `⇔2x^2 + 2x – 3x – 3 + x^2 – 2x – 3x^2 – 12x – 12=0`

    `⇔-15x – 15 = 0`

    `⇔x = -1`

    Bình luận

Viết một bình luận