Bài 1 : a) `5.2 ² – 32` : $2^{4}$ b) `85 – ( 19 – 11) ² : 8` c) `(-2020) + 18 + 12 + 2020` d) `23.75 + 25.23 + 100` Bài 2 : Số sách trong tủ sách tha

Bài 1 :
a) `5.2 ² – 32` : $2^{4}$
b) `85 – ( 19 – 11) ² : 8`
c) `(-2020) + 18 + 12 + 2020`
d) `23.75 + 25.23 + 100`
Bài 2 : Số sách trong tủ sách tham khảo nếu xếp thành từng bó 12 quyển , 15 quyển hoặc 18 quyển đều vừa đủ bó . Tính số sách đó biết số sách trong khoảng 400 đến 600 quyển.
Bài 3 : Một đội thiếu niên khi xếp hàng 3 , hàng 4 , hàng 5 đều thừa 2 người . Hỏi đội thiếu niên có mấy người , biết số người trong khoảng 160 đến 200.
Bài 4 : Tìm số nguyên x biết :
a) x – 2021 = -1
b) |x-7| = 3

0 bình luận về “Bài 1 : a) `5.2 ² – 32` : $2^{4}$ b) `85 – ( 19 – 11) ² : 8` c) `(-2020) + 18 + 12 + 2020` d) `23.75 + 25.23 + 100` Bài 2 : Số sách trong tủ sách tha”

  1. Bài 1 :

    a, 5 . 2^2 – 32 : 2^4

    = 5 . 4 – 32 : 16

    = 20 – 2

    = 18

    b, 85 – ( 19 – 11 )^2 : 8

    = 85 – 8^2 : 8

    = 85 – 8

    = 77

    c, ( – 2020 ) + 18 + 12 + 2020

    = [ ( – 2020 ) + 2020 ] + [ 18 + 12 ]

    = 0 + 30

    = 30

    d, 23 . 75 + 25 . 23 + 100

    = 23 . ( 75 + 25 ) + 100                       

    = 23 . 100 + 100

    = 2300 + 100          

    = 2400

    Bài 2 : 

    Gọi số sách là : a ( 400 ≤ a ≤ 600 )

    Vì khi xếp thành từng bó 12 quyển , 15 quyển , 18 quyển đều vừa đủ nên a chia hết 12 ; 15 ; 18 hay a ∈ BC(12;15;18)

    Ta có : 12 = 2² . 3

                15 = 3 . 5

                18 = 2 . 3²

    ⇒ BCNN(12;15;18) = 3² . 5 . 2² = 180

    ⇒ BC(12;15;18) = B( 180 ) = { 0 ; 180 ; 360 ; 540 ; 720 ; … }

    ⇒ a ∈ { 0 ; 180 ; 360 ; 540 ; … }

    Mà 400 ≤ a ≤ 600 nên a = 540

    Vậy , có 540 quyển sách.

    Bài 3 :

    Gọi số thiếu niên trong đội là :a ( 160 ≤ a ≤ 200 )

    khi xếp hàng 3 , hàng 4 , hàng 5 đều thừa 2 người nên a chia 3 ,4 ,5 đều dư 2 hay ( a – 2 ) ∈ BC(3;4;5)

    Ta có : 3 = 3

                4 = 2²

                5 = 5

    ⇒ BCNN(3;4;5) = 3 . 2² . 5 = 60

    ⇒ BC(3;4;5) = B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; … }

    ⇒ ( a – 2 ) ∈ { 0 ; 60 ; 120 ; 180 ; 240 ; … }

    Mà 160 ≤ a ≤ 200 ⇒ ( a – 2 ) = 180

    ⇒ a = 180 + 2

    ⇒ a = 182

    Vậy , có 182 thiếu niên.

    Bài 4 :

    a, x – 2021 = – 1

    ⇔         x    = ( – 1 ) + 2021

    ⇔        x     = 2020

    Vậy , x = 2020

    b, | x – 7 | = 3

    ⇔ \(\left[ \begin{array}{l}x – 7 = 3\\x – 7 = – 3 \end{array} \right.\) 

    ⇔  \(\left[ \begin{array}{l}x = 10 \\x = 4 \end{array} \right.\) 

    Vậy , x ∈ { 10 ; 4 }

    Bình luận

Viết một bình luận