bài 1:Tìm x a, x^2-5x+1=0 b, 3x^2-12x-1=0

bài 1:Tìm x
a, x^2-5x+1=0
b, 3x^2-12x-1=0

0 bình luận về “bài 1:Tìm x a, x^2-5x+1=0 b, 3x^2-12x-1=0”

  1. Đáp án:

     

    Giải thích các bước giải:

     a) `x^2-5x+1=0`

    `⇔ x^2-5x+\frac{25}{4}-\frac{21}{4}=0`

    `⇔ (x-\frac{5}{2})^2-\frac{21}{4}=0`

    `⇔ (x-\frac{5}{2})^2-(\frac{\sqrt{21}}{2})^2=0`

    `⇔ (x-\frac{5}{2}+\frac{\sqrt{21}}{2})(x-\frac{5}{2}-\frac{\sqrt{21}}{2})=0`

    `⇔` \(\left[ \begin{array}{l}x-\dfrac{5}{2}+\dfrac{\sqrt{21}}{2}=0\\x-\dfrac{5}{2}-\dfrac{\sqrt{21}}{2}=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=\dfrac{5-\sqrt{21}}{2}\\x=\dfrac{5+\sqrt{21}}{2}\end{array} \right.\) 

    Vậy `S={\frac{5-\sqrt{21}}{2};\frac{5+\sqrt{21}}{2}}`

    b) `3x^2-12x-1=0`

    `⇔ (\sqrt{3}x-2\sqrt{3})^2-13=0`

    `⇔ (\sqrt{3}x-2\sqrt{3})^2-(\sqrt{13})^2=0`

    `⇔ (\sqrt{3}x-2\sqrt{3}+\sqrt{13}).(\sqrt{3}x-2\sqrt{3}-\sqrt{13})=0`

    `⇔` \(\left[ \begin{array}{l}\sqrt{3}x-2\sqrt{3}+\sqrt{13}=0\\\sqrt{3}x-2\sqrt{3}-\sqrt{13}=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=\dfrac{6+\sqrt{39}}{3}\\x=\dfrac{6-\sqrt{39}}{3}\end{array} \right.\) 

    Vậy `S={\frac{6+\sqrt{39}}{3};\frac{6-\sqrt{39}}{3}}`

    Bình luận
  2. @Holliwood#:

    Đáp án:

    a) x1 = $\frac{5-√21}{2}$, x2 = $frac{5+√21}{2}$

    b) x1 = $\frac{6-√39}{3}$, x2 = $frac{6+√39}{3}$

    Giải thích các bước giải:

    a) x²-5x+1=0

    ⇔ x = $\frac{-(-5)±√(-5)²-4.1.1}{2.1}$

    ⇔ $\frac{5+√25-4}{2}$ 

    ⇔ $\frac{5±√21}{2}$ 

    ⇔ $\left \{ {{$\frac{5-√21}{2}$,} \atop {$\frac{5+√21}{2}$}} \right.$

    ⇒ x1 = $\frac{5-√21}{2}$, x2 = $\frac{5+√21}{2}$

    b) 3x²-12x-1=0

    ⇔ x = $\frac{-(-12)±√(-12)²-4.3.(-1)}{2.3}$

    ⇔ $\frac{12±√144+124}{6}$ 

    ⇔ $\frac{12±√156}{6}$

    ⇔ $\frac{12±2√39}{6}$

    ⇔ $\left \{ {{$\frac{12-2√39}{6}$,} \atop {$\frac{12+2√39}{6}$}} \right.$

    ⇔ $\left \{ {{$\frac{6-√39}{3}$,} \atop {$\frac{6+√39}{2}$}} \right.$

    ⇒ x1 = $\frac{6-√39}{3}$, x2 = $\frac{6+√39}{3}$

    Bn tham khaor nhes!!!!!!!!!!!!!!!!!!!!!!!!!!\

    Xin ctlhn aj!!!!!!!!!!!!!

    Bình luận

Viết một bình luận