Bài 1 : tìm x , biết:
a ) |2 .x + 3| =2
b) |x- 1/2| =1/3
c) 3.|x-2|- 5=0
d) -3.|x+1|+ 5=0
e) |2.x -1/2|=3/2
f) | x-3 và 1/2 |=2 và 1/2
g) |x+3| =|2.x+1|
h) |2.x-1|=|x+1/2
i)|2-x|=|2.x+3|
k) 2.|x-1|-|x+3|=0
Bài 1 : tìm x , biết:
a ) |2 .x + 3| =2
b) |x- 1/2| =1/3
c) 3.|x-2|- 5=0
d) -3.|x+1|+ 5=0
e) |2.x -1/2|=3/2
f) | x-3 và 1/2 |=2 và 1/2
g) |x+3| =|2.x+1|
h) |2.x-1|=|x+1/2
i)|2-x|=|2.x+3|
k) 2.|x-1|-|x+3|=0
Đáp án:
k) \(\left[ \begin{array}{l}
x = 5\\
x = – \dfrac{1}{3}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left| {2x + 3} \right| = 2\\
\to \left[ \begin{array}{l}
2x + 3 = 2\\
2x + 3 = – 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
2x = – 1\\
2x = – 5
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – \dfrac{1}{2}\\
x = – \dfrac{5}{2}
\end{array} \right.\\
b)\left| {x – \dfrac{1}{2}} \right| = \dfrac{1}{3}\\
\to \left[ \begin{array}{l}
x – \dfrac{1}{2} = \dfrac{1}{3}\\
x – \dfrac{1}{2} = – \dfrac{1}{3}
\end{array} \right. \to \left[ \begin{array}{l}
x = \dfrac{5}{6}\\
x = \dfrac{1}{6}
\end{array} \right.\\
c)3\left| {x – 2} \right| = 5\\
\to \left| {x – 2} \right| = \dfrac{5}{3}\\
\to \left[ \begin{array}{l}
x – 2 = \dfrac{5}{3}\\
x – 2 = – \dfrac{5}{3}
\end{array} \right. \to \left[ \begin{array}{l}
x = \dfrac{{11}}{3}\\
x = \dfrac{1}{3}
\end{array} \right.\\
d)\left| {x + 1} \right| = \dfrac{5}{3}\\
\to \left[ \begin{array}{l}
x + 1 = \dfrac{5}{3}\\
x + 1 = – \dfrac{5}{3}
\end{array} \right. \to \left[ \begin{array}{l}
x = \dfrac{2}{3}\\
x = – \dfrac{8}{3}
\end{array} \right.\\
e)\left| {2x – \dfrac{1}{2}} \right| = \dfrac{3}{2}\\
\to \left[ \begin{array}{l}
2x – \dfrac{1}{2} = \dfrac{3}{2}\\
2x – \dfrac{1}{2} = – \dfrac{3}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = – \dfrac{1}{2}
\end{array} \right.\\
g)\left| {x + 3} \right| = \left| {2x + 1} \right|\\
\to \left[ \begin{array}{l}
x + 3 = 2x + 1\\
x + 3 = – 2x – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2\\
3x = – 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2\\
x = – \dfrac{4}{3}
\end{array} \right.\\
h)\left| {2x – 1} \right| = \left| {x + \dfrac{1}{2}} \right|\\
\to \left[ \begin{array}{l}
2x – 1 = x + \dfrac{1}{2}\\
2x – 1 = – x – \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{3}{2}\\
3x = \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{3}{2}\\
x = \dfrac{1}{6}
\end{array} \right.\\
i)\left| {2 – x} \right| = \left| {2x + 3} \right|\\
\to \left[ \begin{array}{l}
2 – x = 2x + 3\left( {DK:x \le 1} \right)\\
2 – x = – 2x – 3\left( {DK:x > 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
3x = – 1\\
x = – 5\left( l \right)
\end{array} \right.\\
\to x = – \dfrac{1}{3}\\
k)2\left| {x – 1} \right| = \left| {x + 3} \right|\\
\to \left[ \begin{array}{l}
2x – 2 = x + 3\\
2x – 2 = – x – 3
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 5\\
x = – \dfrac{1}{3}
\end{array} \right.
\end{array}\)