Bài 1 : Tìm số hữu tỉ x , sao cho : a, $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$ b, $\frac{x+4}{

Bài 1 : Tìm số hữu tỉ x , sao cho :
a, $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$
b, $\frac{x+4}{1000}$ + $\frac{x+3}{2001}$ = $\frac{x+2}{2002}$ + $\frac{x+1}{2003}$
Mn giúp mik với ạ !!!

0 bình luận về “Bài 1 : Tìm số hữu tỉ x , sao cho : a, $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$ b, $\frac{x+4}{”

  1. Đáp án:

     a)` x=-1`

    b)`x=-2004`

    Giải thích các bước giải:

     a)`(x+1)/10 +(x+1)/11 +(x+1)/12=(x+1)/13 +(x+1)/14`

    `⇔(x+1)/10 +(x+1)/11 +(x+1)/12-(x+1)/13 -(x+1)/14=0`

    `⇔(x+1)(1/10+1/11+1/12-1/13-1/14)=0`

    `⇔x+1=0`(Vì `1/10+1/11+1/12-1/13-1/14\ne0)`

    `⇔x=-1`

    Vậy` x=-1`

    b)`(x+4)/2000+(x+3)/2001=(x+2)/2002+(x+1)/2003`

    `⇔(x+4)/2000+1+(x+3)/2001+1=(x+2)/2002+1+(x+11)/2003+1`

    `⇔(x+2004)/2000+(x+2004)/2001-(x+2004)/2002-(x+2004)/2003=0`

    `⇔(x+2004)(1/2000+1/2001-1/2002-1/2003)`

    `⇔x+2004=0`(Vì `1/2000+1/2001-1/2002-1/2003\ne0)`

    `⇔x=-2004`

    Vậy`x=-2004`

    Bình luận
  2. a,$\frac{x+1}{10}$+ $\frac{x+1}{11}$ + $\frac{x+1}{12}$ =$\frac{x+1}{13}$+$\frac{x+1}{14}$  

    ⇔$\frac{x+1}{10}$+ $\frac{x+1}{11}$ + $\frac{x+1}{12}$ -$\frac{x+1}{13}$-$\frac{x+1}{14}$=0

    ⇔(x+1)($\frac{1}{10}$+$\frac{1}{11}$+$\frac{1}{12}$- $\frac{1}{13}$- $\frac{1}{14}$)  =0

    ⇔x+1=0 (vì $\frac{1}{10}$+$\frac{1}{11}$+$\frac{1}{12}$- $\frac{1}{13}$- $\frac{1}{14}$>0)

    ⇔x=-1

    Vậy x=-1

    b,$\frac{x+4}{2000}$+$\frac{x+3}{2001}$=$\frac{x+2}{2004}$+ $\frac{x+1}{12003}$

    ⇔($\frac{x+4}{2000}$+1)+($\frac{x+3}{2001}$+1)=($\frac{x+2}{2002}$+1)+($\frac{x+1}{2003}$+1)

    ⇔$\frac{x+2004}{2000}$+$\frac{x+2004}{2001}$=$\frac{x+2004}{2002}$+$\frac{x+2004}{2003}$

    ⇔$\frac{x+2004}{2000}$+$\frac{x+2004}{2001}$-$\frac{x+2004}{2002}$-$\frac{x+2004}{2003}$=0

    ⇔(x+2004)($\frac{1}{2000}$+$\frac{1}{2001}$-$\frac{1}{2002}$-$\frac{1}{2003}$)=0

    ⇔x+2004=0 (vì $\frac{1}{2000}$+$\frac{1}{2001}$-$\frac{1}{2002}$-$\frac{1}{2003}$>0)

    ⇔x=-2004

    Vậy x=-2004

     

    Bình luận

Viết một bình luận