Bài 1: Tìm x ∈ Z, biết: |2x-1| ≤ 3 Bài 2: Tìm x, biết: |x+1| ≤ 2 09/10/2021 Bởi Bella Bài 1: Tìm x ∈ Z, biết: |2x-1| ≤ 3 Bài 2: Tìm x, biết: |x+1| ≤ 2
Giải thích các bước giải: `1)`` |2x-1| ≤ 3``=>|2x-1|\in{3;2;1;0}``=>2x-1\in{+-3;+-2;+-1;0}``=>2x\in{4;-2;3;-1;0;2;1}``=>x\in{2;-1;3/2;-1/2;0;1;1/2}`Vì `x\inZZ=>x\in{2;-1;0;1}``2)``|x+1| ≤ 2``=>|x+1|\in{2;1;0}``=>x+1\in{+-2;+-1;0}``=>x\in{1;-3;0;-2;-1}` Bình luận
Bài 1: Ta có: 2x-1 lẻ => \(\left[ \begin{array}{l}|2x-1|=1\\|2x-1|=3\end{array} \right.\) TH1: \(\left[ \begin{array}{l}2x-1=1\\2x-1=-1\end{array} \right.\) => \(\left[ \begin{array}{l}2x=2\\2x=0\end{array} \right.\) => \(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\) TH2: \(\left[ \begin{array}{l}2x-1=3\\2x-1=-3\end{array} \right.\) => \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) => \(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\) Vậy x ∈ {-1;0;1;2} Bài 2: |x+1| ≤ 2 => \(\left[ \begin{array}{l}|x+1|=2\\|x+1|=1\\|x+1|=0\end{array} \right.\) => \(\left[ \begin{array}{l}x+1=2\\x+1=-2\\x+1=1\\x+1=-1\\x+1=0\end{array} \right.\) => \(\left[ \begin{array}{l}x=1\\x=-3\\x=0\\x=-2\\x=-1\end{array} \right.\) (T/M) CHúc bạn học tốt) Bình luận
Giải thích các bước giải:
`1)`
` |2x-1| ≤ 3`
`=>|2x-1|\in{3;2;1;0}`
`=>2x-1\in{+-3;+-2;+-1;0}`
`=>2x\in{4;-2;3;-1;0;2;1}`
`=>x\in{2;-1;3/2;-1/2;0;1;1/2}`
Vì `x\inZZ=>x\in{2;-1;0;1}`
`2)`
`|x+1| ≤ 2`
`=>|x+1|\in{2;1;0}`
`=>x+1\in{+-2;+-1;0}`
`=>x\in{1;-3;0;-2;-1}`
Bài 1:
Ta có: 2x-1 lẻ => \(\left[ \begin{array}{l}|2x-1|=1\\|2x-1|=3\end{array} \right.\)
TH1: \(\left[ \begin{array}{l}2x-1=1\\2x-1=-1\end{array} \right.\)
=> \(\left[ \begin{array}{l}2x=2\\2x=0\end{array} \right.\)
=> \(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\)
TH2: \(\left[ \begin{array}{l}2x-1=3\\2x-1=-3\end{array} \right.\)
=> \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\)
=> \(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)
Vậy x ∈ {-1;0;1;2}
Bài 2:
|x+1| ≤ 2 => \(\left[ \begin{array}{l}|x+1|=2\\|x+1|=1\\|x+1|=0\end{array} \right.\)
=> \(\left[ \begin{array}{l}x+1=2\\x+1=-2\\x+1=1\\x+1=-1\\x+1=0\end{array} \right.\)
=> \(\left[ \begin{array}{l}x=1\\x=-3\\x=0\\x=-2\\x=-1\end{array} \right.\) (T/M)
CHúc bạn học tốt)