Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1) Bài 2. Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)

0 bình luận về “Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1) Bài 2. Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)”

  1. Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

     3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +……+ n.(n+1).(n+2-n-1)

     3A = 1.2.3 + 2.3.4 – 1.2.3 +….+ n.(n+1).(n+2) – (n-1).n.(n+1)

     3A = n.(n+1).(n+2)

     A = n.(n+1).(n+2)/3

    Bài 2. Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)

     Bài 2 tương tự bài 1 :

     4B = 1.2.3.4 + 2.3.4.(5-1) + … + (n – 1)n(n + 1)(n+2-n-2)

     4B = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 +……+ (n – 1)n(n + 1)(n+2) – (n-2)(n – 1)n(n + 1)

     4B = (n – 1)n(n + 1)(n+2)

     B = (n – 1)n(n + 1)(n+2) – 4

    Bình luận
  2. Bài 1 :

    Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

    Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 – 0.1.2
    a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 – 1.2.3
    a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 – 2.3.4
    …………………..
    an-1 = (n – 1)n → 3an-1 =3(n – 1)n → 3an-1 = (n – 1)n(n + 1) – (n – 2)(n – 1)n
    an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) – (n – 1)n(n + 1)

    Cộng từng vế của các đẳng thức trên ta có:

    3(a1 + a2 + … + an) = n(n + 1)(n + 2)

    Bài 2

    Áp dụng tính kế thừa của bài 1 ta có:

    4B = 1.2.3.4 + 2.3.4.4 + … + (n – 1)n(n + 1).4

    = 1.2.3.4 – 0.1.2.3 + 2.3.4.5 – 1.2.3.4 + … + (n – 1)n(n + 1)(n + 2) – [(n – 2)(n – 1)n(n + 1)]

    = (n – 1)n(n + 1)(n + 2) – 0.1.2.3 = (n – 1)n(n + 1)(n + 2)

    :

     

    Bình luận

Viết một bình luận