Bài 1: Tính giá trị của các biểu thức sau
a) P = 12x4y2:( – 9xy2 ) tại x= -3, y= 1,005.
b) Q = 3x4y3:2xy2 tại x= 2, y= 1.
Bài 2: Chứng mình rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến y (x≠0; y≠0) với biểu thức đó là A = 2/3x2y3:( – 1/3xy ) + 2x( y – 1 )( y + 1 )
ko chép mạng nha
Bài 1 :
a) Ta có P = 12x4y2🙁 – 9xy2 ) = 1/2 – 9x4 – 1y2 – 2 = – 4/3x3
Với x= -3, y= 1,005 ta có P = – 4/3( – 3 )3 = 36.
Vậy P = 36
b) Ta có Q = 3x4y3:2xy2 = 3/2x4 – 1y3 – 2 = 3/2x3y.
Với x= 2, y= 1 ta có Q = 3/2( 2 )3.1 = 12.
Vậy Q = 12
Bài 2 :
Ta có A = 2/3x2y3🙁 – 1/3xy ) + 2x( y – 1 )( y + 1 ) = – 2x2 – 1y3 – 1 + 2x( y – 1 )( y + 1 )
= – 2xy2 + 2x( y2 – 1 ) = – 2xy2 + 2xy2 – 2x = – 2x
⇒ Giá trị của biểu thức A không phụ thuộc vào biến y
Bài 1 :
a) Ta có P = 12x4y2🙁 – 9xy2 ) = 1/2 – 9x4 – 1y2 – 2 = – 4/3x3
Với x= -3, y= 1,005 ta có P = – 4/3( – 3 )3 = 36.
Vậy P = 36
b) Ta có Q = 3x4y3:2xy2 = 3/2x4 – 1y3 – 2 = 3/2x3y.
Với x= 2, y= 1 ta có Q = 3/2( 2 )3.1 = 12.
Vậy Q = 12
Bài 2 :
Ta có A = 2/3x2y3🙁 – 1/3xy ) + 2x( y – 1 )( y + 1 ) = – 2x2 – 1y3 – 1 + 2x( y – 1 )( y + 1 )
= – 2xy2 + 2x( y2 – 1 ) = – 2xy2 + 2xy2 – 2x = – 2x