bài 1 : tính nhanh a) 8/19 *5/11 +7/19*8/11 – 8/19*1/11 bài 2 : tính tổng a) 1+1/2+ 1/2^2+ 1/2^3+…+ 1/2^100 11/09/2021 Bởi Kennedy bài 1 : tính nhanh a) 8/19 *5/11 +7/19*8/11 – 8/19*1/11 bài 2 : tính tổng a) 1+1/2+ 1/2^2+ 1/2^3+…+ 1/2^100
Đáp án: 1)a)=-14/209 2)a)A=2+ 1/2^101 Giải thích các bước giải: Bài 1 : tính nhanh a) 8/19 *5/11 +7/19*8/11 – 8/19*1/11 =8/19 *(5/11-1/11)+7/19 *8/11 =8/19*4/11-56/209 =32/209-56/209 =-14/209 Bài 2 : tính tổng a) 1+1/2+ 1/2^2+ 1/2^3+…+ 1/2^100 A = 1 + 1/2+1/2^2+1/2^3+…+1/2^1002A =2 +1 +1/2+1/2^2+1/2^3+…+1/2^1012A – A= (2+1/2^2+1/2^3+…+1/2^101) –(1+1/2+1/2^2+1/2^3+…+1/2^100)2A -A = 2 +1/2^101 A=2+ 1/2^101 Bình luận
$a) \dfrac{8}{19} . \dfrac{5}{11} + \dfrac{7}{19} . \dfrac{8}{11} – \dfrac{8}{19} . \dfrac{1}{11}$ $= \dfrac{8}{19} . \dfrac{5}{11} + \dfrac{8}{19} . \dfrac{7}{11} – \dfrac{8}{19} . \dfrac{1}{11}$ $= \dfrac{8}{19} . (\dfrac{5}{11} + \dfrac{7}{11} – \dfrac{1}{11})$ $= \dfrac{8}{19} . \dfrac{11}{11}$ $= \dfrac{8}{19} . 1$ $= \dfrac{8}{19}$ $b$) Đặt $A = 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ….. + \dfrac{1}{2^{100}}$ $2A = 2 + 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + …. + \dfrac{1}{2^{99}}$ $2A-A= (2 + 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + …. + \dfrac{1}{2^{99}})-(1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ….. + \dfrac{1}{2^{100}})$ $A = 2 – \dfrac{1}{2^{100}}$ $A = \dfrac{2^{101}-1}{2^{100}}$ Bình luận
Đáp án:
1)a)=-14/209
2)a)A=2+ 1/2^101
Giải thích các bước giải:
Bài 1 : tính nhanh
a) 8/19 *5/11 +7/19*8/11 – 8/19*1/11
=8/19 *(5/11-1/11)+7/19 *8/11
=8/19*4/11-56/209
=32/209-56/209
=-14/209
Bài 2 : tính tổng a) 1+1/2+ 1/2^2+ 1/2^3+…+ 1/2^100
A = 1 + 1/2+1/2^2+1/2^3+…+1/2^100
2A =2 +1 +1/2+1/2^2+1/2^3+…+1/2^101
2A – A= (2+1/2^2+1/2^3+…+1/2^101) –
(1+1/2+1/2^2+1/2^3+…+1/2^100)
2A -A = 2 +1/2^101
A=2+ 1/2^101
$a) \dfrac{8}{19} . \dfrac{5}{11} + \dfrac{7}{19} . \dfrac{8}{11} – \dfrac{8}{19} . \dfrac{1}{11}$
$= \dfrac{8}{19} . \dfrac{5}{11} + \dfrac{8}{19} . \dfrac{7}{11} – \dfrac{8}{19} . \dfrac{1}{11}$
$= \dfrac{8}{19} . (\dfrac{5}{11} + \dfrac{7}{11} – \dfrac{1}{11})$
$= \dfrac{8}{19} . \dfrac{11}{11}$
$= \dfrac{8}{19} . 1$
$= \dfrac{8}{19}$
$b$)
Đặt $A = 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ….. + \dfrac{1}{2^{100}}$
$2A = 2 + 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + …. + \dfrac{1}{2^{99}}$
$2A-A= (2 + 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + …. + \dfrac{1}{2^{99}})-(1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ….. + \dfrac{1}{2^{100}})$
$A = 2 – \dfrac{1}{2^{100}}$
$A = \dfrac{2^{101}-1}{2^{100}}$