Bài 2: C1:2.3^x=19.3^8-81^2 C2:2^x+2-2^x=48 C3:5^x=5^2019:(5^2013-100.5^2010) C4:(5^2+3^2).x+(5^2-3^2).x-40.x=10^2 19/08/2021 Bởi Sadie Bài 2: C1:2.3^x=19.3^8-81^2 C2:2^x+2-2^x=48 C3:5^x=5^2019:(5^2013-100.5^2010) C4:(5^2+3^2).x+(5^2-3^2).x-40.x=10^2
Giải thích các bước giải: \[\begin{array}{l}1,\\{2.3^x} = {19.3^8} – {81^2}\\ \Leftrightarrow {2.3^x} = {19.3^8} – {\left( {{3^4}} \right)^2}\\ \Leftrightarrow {2.3^x} = {19.3^8} – {3^8}\\ \Leftrightarrow {2.3^x} = {18.3^8}\\ \Leftrightarrow {3^x} = {9.3^8}\\ \Leftrightarrow {3^x} = {3^{10}}\\ \Leftrightarrow x = 10\\2,\\{2^{x + 2}} – {2^x} = 48\\ \Leftrightarrow {2^x}{.2^2} – {2^x} = {3.2^4}\\ \Leftrightarrow {3.2^x} = {3.2^4}\\ \Leftrightarrow x = 4\\3,\\{5^x} = {5^{2019}}:\left( {{5^{2013}} – {{100.5}^{2010}}} \right)\\ \Leftrightarrow {5^x} = {5^{2019}}:\left( {{5^{2013}} – {{4.5}^2}{{.5}^{2010}}} \right)\\ \Leftrightarrow {5^x} = {5^{2019}}:\left( {{{5.5}^{2012}} – {{4.5}^{2012}}} \right)\\ \Leftrightarrow {5^x} = {5^{2019}}:{5^{2012}}\\ \Leftrightarrow {5^x} = {5^7}\\ \Leftrightarrow x = 7\\4,\\\left( {{5^2} + {3^2}} \right)x + \left( {{5^2} – {3^2}} \right)x – 40x = {10^2}\\ \Leftrightarrow x\left( {{5^2} + {3^2} + {5^2} – {3^2} – 40} \right) = 100\\ \Leftrightarrow x.\left( {{{2.5}^2} – 40} \right) = 100\\ \Leftrightarrow x.10 = 100\\ \Leftrightarrow x = 10\end{array}\] Bình luận
Giải thích các bước giải:
\[\begin{array}{l}
1,\\
{2.3^x} = {19.3^8} – {81^2}\\
\Leftrightarrow {2.3^x} = {19.3^8} – {\left( {{3^4}} \right)^2}\\
\Leftrightarrow {2.3^x} = {19.3^8} – {3^8}\\
\Leftrightarrow {2.3^x} = {18.3^8}\\
\Leftrightarrow {3^x} = {9.3^8}\\
\Leftrightarrow {3^x} = {3^{10}}\\
\Leftrightarrow x = 10\\
2,\\
{2^{x + 2}} – {2^x} = 48\\
\Leftrightarrow {2^x}{.2^2} – {2^x} = {3.2^4}\\
\Leftrightarrow {3.2^x} = {3.2^4}\\
\Leftrightarrow x = 4\\
3,\\
{5^x} = {5^{2019}}:\left( {{5^{2013}} – {{100.5}^{2010}}} \right)\\
\Leftrightarrow {5^x} = {5^{2019}}:\left( {{5^{2013}} – {{4.5}^2}{{.5}^{2010}}} \right)\\
\Leftrightarrow {5^x} = {5^{2019}}:\left( {{{5.5}^{2012}} – {{4.5}^{2012}}} \right)\\
\Leftrightarrow {5^x} = {5^{2019}}:{5^{2012}}\\
\Leftrightarrow {5^x} = {5^7}\\
\Leftrightarrow x = 7\\
4,\\
\left( {{5^2} + {3^2}} \right)x + \left( {{5^2} – {3^2}} \right)x – 40x = {10^2}\\
\Leftrightarrow x\left( {{5^2} + {3^2} + {5^2} – {3^2} – 40} \right) = 100\\
\Leftrightarrow x.\left( {{{2.5}^2} – 40} \right) = 100\\
\Leftrightarrow x.10 = 100\\
\Leftrightarrow x = 10
\end{array}\]