c) x+$\frac{1}{2}$=$2^{5}$ :$2^{3}$ d) ($x+\frac{1}{2}$)$^{2}$=$\frac{4}{25}$

c) x+$\frac{1}{2}$=$2^{5}$ :$2^{3}$
d) ($x+\frac{1}{2}$)$^{2}$=$\frac{4}{25}$

0 bình luận về “c) x+$\frac{1}{2}$=$2^{5}$ :$2^{3}$ d) ($x+\frac{1}{2}$)$^{2}$=$\frac{4}{25}$”

  1. Giải thích các bước giải :

    c, `x + 1/2 = 2^5 : 2^3`

    `⇔ x + 1/2 = 2^2`

    `⇔ x + 1/2 = 4`

    `⇔ x = 4 – 1/2`

    `⇔ x = 4 – 0,5`

    `⇔ x = 3,5`

    Vậy `x = 3,5`

    d, `( x + 1/2 )^2 = 4/25`

    ⇔ \(\left[ \begin{array}{l}x+ \dfrac{1}{2} = \dfrac{2}{5}\\x+ \dfrac{1}{2} = \dfrac{-2}{5}\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x= \dfrac{-1}{10}\\x= \dfrac{-9}{10}\end{array} \right.\) 

    Vậy `…`

     

    Bình luận
  2. Tham khảo

    ` c) x+\frac{1}{2}=2^5:2^3`

    `⇒x+\frac{1}{2}=2^2`

    `⇒x+\frac{1}{2}=4`

    `⇒x=4-\frac{1}{2}`

    `⇒x=\frac{7}{2}`

    `d) (x+\frac{1}{2})^2=\frac{4}{25}`

    `⇒(x+\frac{1}{2})^2=(\frac{2}{5})^2`

    `⇒`\(\left[ \begin{array}{l}x+\dfrac{1}{2}=\dfrac{2}{5}\\x+\dfrac{1}{2}=\dfrac{-2}{5}\end{array} \right.\) 

    `⇒`\(\left[ \begin{array}{l}x=\dfrac{2}{5}-\dfrac{1}{2}\\x=\dfrac{-2}{5}-\dfrac{1}{2}\end{array} \right.\) 

    `⇒`\(\left[ \begin{array}{l}x=\dfrac{-1}{10}\\x=\dfrac{-9}{10}\end{array} \right.\) 

    Vậy `x=\frac{-1}{10}` hoặc `x=\frac{-9}{10}`

    Bình luận

Viết một bình luận