c/m rằng a.5^2005+5^2003 chia hết cho 13 b.a^2+b^2+1 ≥ab +a+b c.cho a+b+c=0.c/m a^3+b^3+c^3=3abc 29/07/2021 Bởi Raelynn c/m rằng a.5^2005+5^2003 chia hết cho 13 b.a^2+b^2+1 ≥ab +a+b c.cho a+b+c=0.c/m a^3+b^3+c^3=3abc
Giải thích các bước giải: a, \[{5^{2005}} + {5^{2003}} = {5^{2003}}.\left( {{5^2} + 1} \right) = {26.5^{2003}} \vdots 13\] b, \(\begin{array}{l}{\left( {a – b} \right)^2} \ge 0 \Leftrightarrow {a^2} – 2ab + {b^2} \ge 0 \Leftrightarrow {a^2} + {b^2} \ge 2ab\\{\left( {a – 1} \right)^2} \ge 0 \Leftrightarrow {a^2} – 2a + 1 \ge 0 \Leftrightarrow {a^2} + 1 \ge 2a\\{\left( {b – 1} \right)^2} \ge 0 \Leftrightarrow {b^2} – 2b + 1 \ge 0 \Leftrightarrow {b^2} + 1 \ge 2b\\ \Rightarrow \left( {{a^2} + {b^2}} \right) + \left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right) \ge 2ab + 2a + 2b\\ \Leftrightarrow {a^2} + {b^2} + 1 \ge ab + a + b\end{array}\) c, \(\begin{array}{l}{a^3} + {b^3} + {c^3} – 3abc\\ = {\left( {a + b} \right)^3} – 3ab\left( {a + b} \right) + {c^3} – 3abc\\ = \left[ {{{\left( {a + b + c} \right)}^3} – 3\left( {a + b} \right)c\left( {a + b + c} \right)} \right] – 3ab\left( {a + b + c} \right)\\ = {\left( {a + b + c} \right)^3} – \left( {a + b + c} \right)\left( {3ac + 3ab} \right) – 3ab\left( {a + b + c} \right)\\ = {\left( {a + b + c} \right)^3} – \left( {a + b + c} \right)\left( {3ab + 3bc + 3ca} \right)\\ = 0\,\,\,\,\left( {a + b + c = 0} \right)\\ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\end{array}\) Bình luận
bạn tham khảo nha a) ta có: 5^2005 + 5^2003 = 5^2003.5^2 + 5^2003= 5^2003.(25 + 1)= 26.5^2003vì 26 chia hết cho 13suy ra 26.5^2003 chia hết cho 13hay 5^2005 + 5^2003 chia hết cho 13 Bình luận
Giải thích các bước giải:
a,
\[{5^{2005}} + {5^{2003}} = {5^{2003}}.\left( {{5^2} + 1} \right) = {26.5^{2003}} \vdots 13\]
b,
\(\begin{array}{l}
{\left( {a – b} \right)^2} \ge 0 \Leftrightarrow {a^2} – 2ab + {b^2} \ge 0 \Leftrightarrow {a^2} + {b^2} \ge 2ab\\
{\left( {a – 1} \right)^2} \ge 0 \Leftrightarrow {a^2} – 2a + 1 \ge 0 \Leftrightarrow {a^2} + 1 \ge 2a\\
{\left( {b – 1} \right)^2} \ge 0 \Leftrightarrow {b^2} – 2b + 1 \ge 0 \Leftrightarrow {b^2} + 1 \ge 2b\\
\Rightarrow \left( {{a^2} + {b^2}} \right) + \left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right) \ge 2ab + 2a + 2b\\
\Leftrightarrow {a^2} + {b^2} + 1 \ge ab + a + b
\end{array}\)
c,
\(\begin{array}{l}
{a^3} + {b^3} + {c^3} – 3abc\\
= {\left( {a + b} \right)^3} – 3ab\left( {a + b} \right) + {c^3} – 3abc\\
= \left[ {{{\left( {a + b + c} \right)}^3} – 3\left( {a + b} \right)c\left( {a + b + c} \right)} \right] – 3ab\left( {a + b + c} \right)\\
= {\left( {a + b + c} \right)^3} – \left( {a + b + c} \right)\left( {3ac + 3ab} \right) – 3ab\left( {a + b + c} \right)\\
= {\left( {a + b + c} \right)^3} – \left( {a + b + c} \right)\left( {3ab + 3bc + 3ca} \right)\\
= 0\,\,\,\,\left( {a + b + c = 0} \right)\\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc
\end{array}\)
bạn tham khảo nha
a) ta có: 5^2005 + 5^2003 = 5^2003.5^2 + 5^2003
= 5^2003.(25 + 1)
= 26.5^2003
vì 26 chia hết cho 13
suy ra 26.5^2003 chia hết cho 13
hay 5^2005 + 5^2003 chia hết cho 13