Các cao nhân giải giúp em bài này : B = $(13-4\sqrt{3})(7+4\sqrt{3})$-$8\sqrt{20+2\sqrt{43+24\sqrt{3}}}$ 03/08/2021 Bởi Margaret Các cao nhân giải giúp em bài này : B = $(13-4\sqrt{3})(7+4\sqrt{3})$-$8\sqrt{20+2\sqrt{43+24\sqrt{3}}}$
Đáp án: $B=35$ Giải thích các bước giải: Ta có: $\begin{array}{l}B = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {43 + 24\sqrt 3 } } \\ = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {16 + 2.4.3\sqrt 3 + 27} } \\ = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {{{\left( {4 + 3\sqrt 3 } \right)}^2}} } \\ = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\left( {4 + 3\sqrt 3 } \right)} \\ = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {28 + 6\sqrt 3 } \\ = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {27 + 2.3\sqrt 3 + 1} \\ = 91 – {\left( {4\sqrt 3 } \right)^2} + 24\sqrt 3 – 8\sqrt {{{\left( {3\sqrt 3 + 1} \right)}^2}} \\ = 91 – 48 + 24\sqrt 3 – 8\left( {3\sqrt 3 + 1} \right)\\ = 91 – 48 + 24\sqrt 3 – 24\sqrt 3 – 8\\ = 35\end{array}$ Bình luận
$B=(1-2.2\sqrt3.1+12)(3+2.2\sqrt3.1+4)- 8\sqrt{20+2\sqrt{43+24\sqrt3}}$ $=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{20+2\sqrt{(3\sqrt3+4)^2}}$ $=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{20+2(3\sqrt3+4)}$ $=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{28+6\sqrt3}$ $=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{(3\sqrt3+1)^2}$ $=(1-2\sqrt3)^2.(2+\sqrt3)^2-8.(3\sqrt3+1)$ $=[(1-2\sqrt3)(2+\sqrt3)]^2-8(3\sqrt3+1)$ $=(2+\sqrt3-4\sqrt3-6)^2-8(3\sqrt3+1)$ $=(-3\sqrt3-4)^2-8(3\sqrt3+1)$ $=27+24\sqrt3+16-24\sqrt3-8$ $=35$ Bình luận
Đáp án:
$B=35$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
B = \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {43 + 24\sqrt 3 } } \\
= \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {16 + 2.4.3\sqrt 3 + 27} } \\
= \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\sqrt {{{\left( {4 + 3\sqrt 3 } \right)}^2}} } \\
= \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {20 + 2\left( {4 + 3\sqrt 3 } \right)} \\
= \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {28 + 6\sqrt 3 } \\
= \left( {13 – 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) – 8\sqrt {27 + 2.3\sqrt 3 + 1} \\
= 91 – {\left( {4\sqrt 3 } \right)^2} + 24\sqrt 3 – 8\sqrt {{{\left( {3\sqrt 3 + 1} \right)}^2}} \\
= 91 – 48 + 24\sqrt 3 – 8\left( {3\sqrt 3 + 1} \right)\\
= 91 – 48 + 24\sqrt 3 – 24\sqrt 3 – 8\\
= 35
\end{array}$
$B=(1-2.2\sqrt3.1+12)(3+2.2\sqrt3.1+4)- 8\sqrt{20+2\sqrt{43+24\sqrt3}}$
$=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{20+2\sqrt{(3\sqrt3+4)^2}}$
$=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{20+2(3\sqrt3+4)}$
$=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{28+6\sqrt3}$
$=(1-2\sqrt3)^2.(2+\sqrt3)^2-8\sqrt{(3\sqrt3+1)^2}$
$=(1-2\sqrt3)^2.(2+\sqrt3)^2-8.(3\sqrt3+1)$
$=[(1-2\sqrt3)(2+\sqrt3)]^2-8(3\sqrt3+1)$
$=(2+\sqrt3-4\sqrt3-6)^2-8(3\sqrt3+1)$
$=(-3\sqrt3-4)^2-8(3\sqrt3+1)$
$=27+24\sqrt3+16-24\sqrt3-8$
$=35$