Câu 1. (√2-1 )/(√2+2)- 2/(2+ √2)+ (√2+1)/√2
Câu 2 . (2+√5)/(√2+√(3+√5) )+(2-√5)/(√2-√(3-√5) )
Câu 3 .(√x+ 1)/(√x- 2) + (2√x)/(√x+ 2) + (2 + 5√x)/(4 – x)
RÚT GỌN HỘ MÌNH VỚI Ạ
Câu 1. (√2-1 )/(√2+2)- 2/(2+ √2)+ (√2+1)/√2
Câu 2 . (2+√5)/(√2+√(3+√5) )+(2-√5)/(√2-√(3-√5) )
Câu 3 .(√x+ 1)/(√x- 2) + (2√x)/(√x+ 2) + (2 + 5√x)/(4 – x)
RÚT GỌN HỘ MÌNH VỚI Ạ
Đáp án:
Giải thích các bước giải:
Mờ thì cứ cmt
để mk chụp lại cho
Đáp án:
$\begin{array}{l}
1)\dfrac{{\sqrt 2 – 1}}{{\sqrt 2 + 2}} – \dfrac{2}{{2 + \sqrt 2 }} + \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 2 – 1 – 2}}{{2 + \sqrt 2 }} + \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 2 – 3}}{{\sqrt 2 .\left( {\sqrt 2 + 1} \right)}} + \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 2 – 3 + {{\left( {\sqrt 2 + 1} \right)}^2}}}{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}\\
= \dfrac{{\sqrt 2 – 3 + 2 + 2\sqrt 2 + 1}}{{\sqrt 2 .\left( {\sqrt 2 + 1} \right)}}\\
= \dfrac{3}{{\sqrt 2 + 1}}\\
= \dfrac{{3\left( {\sqrt 2 – 1} \right)}}{{2 – 1}}\\
= 3\sqrt 2 – 3\\
2)\\
\dfrac{{2 + \sqrt 5 }}{{\sqrt 2 + \sqrt {3 + \sqrt 5 } }} + \dfrac{{2 – \sqrt 5 }}{{\sqrt 2 – \sqrt {3 – \sqrt 5 } }}\\
= \dfrac{{2\sqrt 2 + \sqrt {10} }}{{2 + \sqrt {6 + 2\sqrt 5 } }} + \dfrac{{2\sqrt 2 – \sqrt {10} }}{{2 – \sqrt {6 – 2\sqrt 5 } }}\\
= \dfrac{{2\sqrt 2 + \sqrt {10} }}{{2 + \sqrt 5 + 1}} + \dfrac{{2\sqrt 2 – \sqrt {10} }}{{2 – \left( {\sqrt 5 – 1} \right)}}\\
= \dfrac{{2\sqrt 2 + \sqrt {10} }}{{3 + \sqrt 5 }} + \dfrac{{2\sqrt 2 – \sqrt {10} }}{{1 – \sqrt 5 }}\\
= \sqrt 2 \\
3)\\
\dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 – x}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x – 2} \right) – 2 – 5\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2 + 2x – 4\sqrt x – 2 – 5\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right)}}\\
= \dfrac{{3x – 6\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right)}}\\
= \dfrac{{3\sqrt x }}{{\sqrt x + 2}}
\end{array}$