Câu hỏi cuối nhé! Tính `1-1/3-1/9-1/27+1/81-…+1/6561-1/19683`

Câu hỏi cuối nhé!
Tính
`1-1/3-1/9-1/27+1/81-…+1/6561-1/19683`

0 bình luận về “Câu hỏi cuối nhé! Tính `1-1/3-1/9-1/27+1/81-…+1/6561-1/19683`”

  1.  Đặt ` A = 1 – 1/3 + 1/9 – 1/27 + 1/81 – …. + 1/6561 – 1/19683`

    `A = 1 – 1/3 + 1/3^2 – 1/3^3 + 1/3^4 – … + 1/3^8 – 1/3^9`

    `3 . A = 3 – 1 + 1/3 – 1/3^2 + 1/3^3 – …. + 1/3^7 – 1/3^8`

    `3A + A = ( 3 – 1 + 1/3 – 1/3^2 + 1/3^3 – … + 1/3^7 – 1/3^8 ) + ( 1 – 1/3 + 1/3^2 – 1/3^3 + 1/3^4 – …. + 1/3^8 – 1/3^9 )`

    `4 . A = 3 – 1 + 1/3 – 1/3^2 + 1/3^3 – …. + 1/3^7 – 1/3^8 + 1 – 1/3 + 1/3^2 – 1/3^3 + 1/3^4 – …. + 1/3^8 – 1/3^9`

    `4 . A = 3 – 1/3^9`

    `4 . A = ( 3^10 – 1 )/3^9` 

    `A = ( 3^10 – 1 )/3^9 : 4`

    `A = ( 3^10 – 1 )/( 3^9 . 4 )`

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    `M=1-1/3+1/9-1/27+1/81-…+1/6561-1/19683`

    `M=1-1/3+1/3^2-1/3^3+1/3^4-….+1/3^8-1/3^9`

    `=>3M=3-1+1/3-1/3^2+1/3^3-….+1/3^7-1/3^8`

    `=>3M+M=(3-1+1/3-1/3^2+1/3^3-….+1/3^7-1/3^8)+(1-1/3+1/3^2-1/3^3+1/3^4-….+1/3^8-1/3^9)`

    `=>4M=3-1/3^9`

    `=>M=(3-1/3^9)/4`

    `=>M=3/4 -1/(4.3^9)`

    Bình luận

Viết một bình luận