CHỈ CẦN LÀM CÂU D THÔI Ạ
Cho tam giác ABC cân tại A ( góc A < 90o ) . Kẻ BD vuông góc cới AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . CM : tam giác ACM vuông
Đáp án:
Giải thích các bước giải:
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H thuộc BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C