cho 1/x+1/y+1/z= 1/(x+y+z) cmr: 1/x^2019+1/y^2019+1/z^2019=1/(x^2019+y^2019+z^2019)

cho 1/x+1/y+1/z= 1/(x+y+z) cmr: 1/x^2019+1/y^2019+1/z^2019=1/(x^2019+y^2019+z^2019)

0 bình luận về “cho 1/x+1/y+1/z= 1/(x+y+z) cmr: 1/x^2019+1/y^2019+1/z^2019=1/(x^2019+y^2019+z^2019)”

  1. Đáp án:

    Ta có: `1/x+1/y+1/z=1/(x+y+z)`

    `=> 1/x+1/y=1/(x+y+z)-1/z`

    `=> (x+y)/(xy)=-(x+y)/(z.(x+y+z))`

    `=> (x+y).[z(x+y+z)+xy]=0 `

    `=> (x+y)(y+z)(z+x)=0`

    `=>` \(\left[ \begin{array}{l}x+y=0\\y+z=0\\z+x=0\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=-y\\y=-z\\z=-x\end{array} \right.\) 

    `=> 1/(x^2019)+1/(y^2019)+1/(z^2019)=1/(z^2019)`

    `1/(x^2019+y^2019+z^2019)=1/(z^2019)`

    `=> 1/(x^2019)+1/(y^2019)+1/(z^2019)=1/(x^2019+y^2019+z^2019)=1/(z^2019)`

    `=> đpcm`

    Bình luận
  2. Có : $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} = \dfrac{1}{x+y+z}$

    $\to \dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}$

    $\to \dfrac{x+y}{xy} = \dfrac{-(x+y)}{z.(x+y+z)}$

    $\to (x+y).[z.(x+y+z)+xy] = 0 $

    $\to (x+y).(y+z).(z+x) = 0 $

    $\to$ Trong ba số $x,y,z$ luôn có hai số đối nhau.

    Không mất tính tổng quát giả sử $x=-y$

    Khi đó : $\dfrac{1}{x^{2019}} + \dfrac{1}{y^{2019}} + \dfrac{1}{z^{2019}} = \dfrac{1}{z^{2019}}$

    Và $\dfrac{1}{x^{2019}+y^{2019}+z^{2019}} = \dfrac{1}{z^{2019}}$

    Do đó : $\dfrac{1}{x^{2019}} + \dfrac{1}{y^{2019}} + \dfrac{1}{z^{2019}}  = \dfrac{1}{x^{2019}+y^{2019}+z^{2019}} $

     

    Bình luận

Viết một bình luận