cho 2(x+y)=5(y+x)=3(z+x).Chứng minh x-y/4=y-z/5 01/12/2021 Bởi Lyla cho 2(x+y)=5(y+x)=3(z+x).Chứng minh x-y/4=y-z/5
Ta có: $2(x+y) = 5(y+z) = 3(z+x)$ $+) \quad 2(x+y) = 3(z+x)$ $\to \dfrac{x+y}{3} = \dfrac{z+x}{2}$ $\to \dfrac{x+y}{3} = \dfrac{z+x}{2} = \dfrac{x +y – z -x}{3 – 2} = \dfrac{y-z}{1} = y -z$ $\to \dfrac{z+x}{2} = y – z$ $\to \dfrac{z+x}{10} = \dfrac{y-z}{5}\qquad (1)$ $+) \quad 5(y+z) = 3(z+x)$ $\to \dfrac{y+z}{3} = \dfrac{z+x}{5}$ $\to \dfrac{y+z}{3} = \dfrac{z+x}{5} = \dfrac{z+x- y- z}{5 – 3} = \dfrac{x-y}{2}$ $\to \dfrac{z+x}{5} = \dfrac{x-y}{2}$ $\to \dfrac{z+x}{10} = \dfrac{x-y}{4}\qquad (2)$ $(1)(2)\to \dfrac{x-y}{4} = \dfrac{y-z}{5}$ Bình luận
Bổ xung cách 2 Có `2(x+y)=5(y+z)=3(z+x)` `⇒\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}` Áp dụng T/C dãy tỉ số = nhau `\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-z+x}{15-10}=\frac{y-z}{5}` Do đó:`\frac{z+x}{10}=\frac{y-z}{5}(1)` Xét `\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}` Áp dụng T/C dãy tỉ số = nhau `\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{z+x-y-z}{10-6}=\frac{x-y}{4}` Do đó:`\frac{z+x}{10}=\frac{x-y}{4}(2)` Từ `(1)(2)⇒\frac{x-y}{4}=\frac{y-z}{5}` Vậy đpcm Bình luận
Ta có:
$2(x+y) = 5(y+z) = 3(z+x)$
$+) \quad 2(x+y) = 3(z+x)$
$\to \dfrac{x+y}{3} = \dfrac{z+x}{2}$
$\to \dfrac{x+y}{3} = \dfrac{z+x}{2} = \dfrac{x +y – z -x}{3 – 2} = \dfrac{y-z}{1} = y -z$
$\to \dfrac{z+x}{2} = y – z$
$\to \dfrac{z+x}{10} = \dfrac{y-z}{5}\qquad (1)$
$+) \quad 5(y+z) = 3(z+x)$
$\to \dfrac{y+z}{3} = \dfrac{z+x}{5}$
$\to \dfrac{y+z}{3} = \dfrac{z+x}{5} = \dfrac{z+x- y- z}{5 – 3} = \dfrac{x-y}{2}$
$\to \dfrac{z+x}{5} = \dfrac{x-y}{2}$
$\to \dfrac{z+x}{10} = \dfrac{x-y}{4}\qquad (2)$
$(1)(2)\to \dfrac{x-y}{4} = \dfrac{y-z}{5}$
Bổ xung cách 2
Có `2(x+y)=5(y+z)=3(z+x)`
`⇒\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}`
Áp dụng T/C dãy tỉ số = nhau
`\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-z+x}{15-10}=\frac{y-z}{5}`
Do đó:`\frac{z+x}{10}=\frac{y-z}{5}(1)`
Xét `\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}`
Áp dụng T/C dãy tỉ số = nhau
`\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{z+x-y-z}{10-6}=\frac{x-y}{4}`
Do đó:`\frac{z+x}{10}=\frac{x-y}{4}(2)`
Từ `(1)(2)⇒\frac{x-y}{4}=\frac{y-z}{5}`
Vậy đpcm