cho x^2/(x+y) + y^2/(y+z) + z^2/(z+x) = 2011 tính y^2/(x+y) + z^2/(y+z) + x^2/(z+x)

cho x^2/(x+y) + y^2/(y+z) + z^2/(z+x) = 2011 tính y^2/(x+y) + z^2/(y+z) + x^2/(z+x)

0 bình luận về “cho x^2/(x+y) + y^2/(y+z) + z^2/(z+x) = 2011 tính y^2/(x+y) + z^2/(y+z) + x^2/(z+x)”

  1. Đáp án:

    \[\frac{{{y^2}}}{{x + y}} + \frac{{{z^2}}}{{y + z}} + \frac{{{x^2}}}{{z + x}} = 2011\]

    Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \frac{{{x^2}}}{{x + y}} + \frac{{{y^2}}}{{y + z}} + \frac{{{z^2}}}{{z + x}} = 2011\\
     \Rightarrow \left( {x – \frac{{{x^2}}}{{x + y}}} \right) + \left( {y – \frac{{{y^2}}}{{y + z}}} \right) + \left( {z – \frac{{{z^2}}}{{z + x}}} \right) = x + y + z – 2011\\
     \Leftrightarrow \frac{{xy}}{{x + y}} + \frac{{yz}}{{y + z}} + \frac{{zx}}{{z + x}} = x + y + z – 2011\\
    2\left( {x + y + z} \right) = \left( {x + y} \right) + \left( {y + z} \right) + \left( {z + x} \right)\\
     \Leftrightarrow 2.\left( {x + y + z} \right) = \frac{{{{\left( {x + y} \right)}^2}}}{{x + y}} + \frac{{{{\left( {y + z} \right)}^2}}}{{y + z}} + \frac{{{{\left( {z + x} \right)}^2}}}{{z + x}}\\
     \Leftrightarrow 2.\left( {x + y + z} \right) = \left( {\frac{{{x^2}}}{{x + y}} + \frac{{2xy}}{{x + y}} + \frac{{{y^2}}}{{x + y}}} \right) + \left( {\frac{{{y^2}}}{{y + z}} + \frac{{2yx}}{{y + z}} + \frac{{{z^2}}}{{y + z}}} \right) + \left( {\frac{{{z^2}}}{{z + x}} + \frac{{2zx}}{{z + x}} + \frac{{{x^2}}}{{z + x}}} \right)\\
     \Leftrightarrow 2.\left( {x + y + z} \right) = \left( {\frac{{{x^2}}}{{x + y}} + \frac{{{y^2}}}{{y + z}} + \frac{{{z^2}}}{{z + x}}} \right) + 2.\left( {\frac{{xy}}{{x + y}} + \frac{{yz}}{{y + z}} + \frac{{zx}}{{z + x}}} \right) + \left( {\frac{{{y^2}}}{{x + y}} + \frac{{{z^2}}}{{y + z}} + \frac{{{x^2}}}{{z + x}}} \right)\\
     \Leftrightarrow 2\left( {x + y + z} \right) = 2011 + 2.\left( {x + y + z – 2011} \right) + \left( {\frac{{{y^2}}}{{x + y}} + \frac{{{z^2}}}{{y + z}} + \frac{{{x^2}}}{{z + x}}} \right)\\
     \Rightarrow \left( {\frac{{{y^2}}}{{x + y}} + \frac{{{z^2}}}{{y + z}} + \frac{{{x^2}}}{{z + x}}} \right) = 2011
    \end{array}\)

    Bình luận

Viết một bình luận