cho 4x-3y/5 = 5y-4z/3 = 3z-5x/4 và x-y+z=2020 tìm x, y, z 06/08/2021 Bởi Lyla cho 4x-3y/5 = 5y-4z/3 = 3z-5x/4 và x-y+z=2020 tìm x, y, z
Đáp án: $\left\{\begin{matrix}x=505.3=1515& \\y=505.4=2020&\\z=505.5=2525& \end{matrix}\right.$ Giải thích các bước giải: `(4x-3y)/5=(5y-4z)/3=(3z-5x)/4` `=> (20x-15y)/25=(15y-12z)/9=(12z-20x)/16` `=(20x-15y+15y-12z+12z-20x)/(25+9+16)=0/50=0` `=>` $\left\{\begin{matrix}\dfrac{4x-3y}{5}=0& \\\dfrac{5y-4z}{3}=0&\\\dfrac{3z-5x}{4}=0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}4x-3y=0& \\5y-4z=0&\\3z-5x=0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}4x=3y& \\5y=4z&\\3z=5x& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}& \\\dfrac{y}{4}=\dfrac{z}{5}&\\\dfrac{z}{5}=\dfrac{x}{3}& \end{matrix}\right.$ `=> x/3=y/4=z/5` `=(x-y+z)/(3-4+5)=2020/4=505` `=>` $\left\{\begin{matrix}x=505.3=1515& \\y=505.4=2020&\\z=505.5=2525& \end{matrix}\right.$ Bình luận
Đáp án: $x=1515,y=2020,z=2525$ Giải thích các bước giải: Theo tính chất dãy tỉ số bằng nhau ta có: $\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}=\dfrac{5(4x-3y)+3(5y-4z)+4(3z-5x)}{5.5+3.3+4.4}$ $=\dfrac{20x-15y+15y-12z+12z-20x}{50}=\dfrac{0}{50}=0$ $\Rightarrow \left\{\begin{array}{l} \dfrac{4x-3y}{5}=0\\ \dfrac{5y-4z}{3}=0\\ \dfrac{3z-5x}{4}=0\end{array} \right.\Rightarrow \left\{\begin{array}{l} 4x-3y=0\\ 5y-4z=0\\ 3z-5x=0\end{array} \right.\Rightarrow \left\{\begin{array}{l} \dfrac{x}{3}=\dfrac{y}{4}\\ \dfrac{y}{4}=\dfrac{z}{5}\\ \dfrac{z}{5}=\dfrac{x}{3}\end{array} \right.$ $\Rightarrow \dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x-y+z}{3-4+5}=\dfrac{2020}{4}=505$ (tính chất dãy tỉ số bằng nhau) $\Rightarrow \dfrac{x}{3}=505\Rightarrow x=1515$ $\dfrac{y}{4}=505\Rightarrow 2020$ $\dfrac{z}{5}=505\Rightarrow z=2525$ Bình luận
Đáp án:
$\left\{\begin{matrix}x=505.3=1515& \\y=505.4=2020&\\z=505.5=2525& \end{matrix}\right.$
Giải thích các bước giải:
`(4x-3y)/5=(5y-4z)/3=(3z-5x)/4`
`=> (20x-15y)/25=(15y-12z)/9=(12z-20x)/16`
`=(20x-15y+15y-12z+12z-20x)/(25+9+16)=0/50=0`
`=>` $\left\{\begin{matrix}\dfrac{4x-3y}{5}=0& \\\dfrac{5y-4z}{3}=0&\\\dfrac{3z-5x}{4}=0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}4x-3y=0& \\5y-4z=0&\\3z-5x=0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}4x=3y& \\5y=4z&\\3z=5x& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}& \\\dfrac{y}{4}=\dfrac{z}{5}&\\\dfrac{z}{5}=\dfrac{x}{3}& \end{matrix}\right.$ `=> x/3=y/4=z/5`
`=(x-y+z)/(3-4+5)=2020/4=505`
`=>` $\left\{\begin{matrix}x=505.3=1515& \\y=505.4=2020&\\z=505.5=2525& \end{matrix}\right.$
Đáp án:
$x=1515,y=2020,z=2525$
Giải thích các bước giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
$\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}=\dfrac{5(4x-3y)+3(5y-4z)+4(3z-5x)}{5.5+3.3+4.4}$
$=\dfrac{20x-15y+15y-12z+12z-20x}{50}=\dfrac{0}{50}=0$
$\Rightarrow \left\{\begin{array}{l} \dfrac{4x-3y}{5}=0\\ \dfrac{5y-4z}{3}=0\\ \dfrac{3z-5x}{4}=0\end{array} \right.\Rightarrow \left\{\begin{array}{l} 4x-3y=0\\ 5y-4z=0\\ 3z-5x=0\end{array} \right.\Rightarrow \left\{\begin{array}{l} \dfrac{x}{3}=\dfrac{y}{4}\\ \dfrac{y}{4}=\dfrac{z}{5}\\ \dfrac{z}{5}=\dfrac{x}{3}\end{array} \right.$
$\Rightarrow \dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x-y+z}{3-4+5}=\dfrac{2020}{4}=505$ (tính chất dãy tỉ số bằng nhau)
$\Rightarrow \dfrac{x}{3}=505\Rightarrow x=1515$
$\dfrac{y}{4}=505\Rightarrow 2020$
$\dfrac{z}{5}=505\Rightarrow z=2525$