Cho 4x+y=1 Chứng minh rằng: $4x^{2}$+ $y^{2}$ ≥ $\frac{1}{5}$

Cho 4x+y=1
Chứng minh rằng: $4x^{2}$+ $y^{2}$ ≥ $\frac{1}{5}$

0 bình luận về “Cho 4x+y=1 Chứng minh rằng: $4x^{2}$+ $y^{2}$ ≥ $\frac{1}{5}$”

  1. Ta có $4x+y=1$

    $\to y = 1-4x$

    Ta có : $4x^2+y^2$

    $ = 4x^2+(1-4x)^2$

    $ = 20x^2-8y+1$

    $ 20.\bigg(x^2-\dfrac{2}{5}x+\dfrac{1}{20}\bigg)$

    $ = 20.\bigg(x^2-2.x.\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{100}\bigg)$

    $ = 20.\bigg(x-\dfrac{1}{5}\bigg)^2 +\dfrac{1}{5} ≥ \dfrac{1}{5}$

    Dấu “=” xảy ra $⇔x=y=\dfrac{1}{5}$

     

    Bình luận
  2. $4x+y=1⇒y=1-4x$

    $⇒4x^2+y^2$

    $=4x^2+(1-4x)^2$

    $=4x^2+1-8x+16x^2$

    $=20x^2-8x+1$

    $=20(x^2-\frac{2}{5}x+\frac{1}{20})$

    $=20(x-\frac{1}{5})^2+\frac{1}{5}≥\frac{1}{5}(đpcm)$.

    Bình luận

Viết một bình luận