Cho A= 1 + 1/2 + 1/3 + 1/4 +…+ 1/2^100 – 1. Chứng minh 50 < A 17/10/2021 Bởi Lyla Cho A= 1 + 1/2 + 1/3 + 1/4 +…+ 1/2^100 – 1. Chứng minh 50 < A
`A=1+1/2+1/3+1/4+…+1/(2^(100)-1)` `CM:50<A` `+)` Ta có : `A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+..+1/15)+..+(1/(2^99)+1/(2^(99)+1)+..+1/(2^(100)-1)` `99` nhóm `<1+2.1/2+2^(2).1/(2^3).1/(2^3)+…+2^(99).1/(2^99))` `<=>1+1+1+…+1=100` `<=>A1+1/2+2.1/(2(2^2))+2^2.1/(2^3).1/(2^4)+..+(1^991)/(2^100)-1-1/(2^100)=1+1/2+1/2+…+1/2-1/(2^100)` `<=>1+100.12-1/(2^100)` `<=>50<50+1-1/(2^100)` Vậy `50<A` Bình luận
`A=1+1/2+1/3+1/4+…+1/(2^(100)-1)`
`CM:50<A`
`+)` Ta có :
`A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+..+1/15)+..+(1/(2^99)+1/(2^(99)+1)+..+1/(2^(100)-1)`
`99` nhóm `<1+2.1/2+2^(2).1/(2^3).1/(2^3)+…+2^(99).1/(2^99))`
`<=>1+1+1+…+1=100`
`<=>A1+1/2+2.1/(2(2^2))+2^2.1/(2^3).1/(2^4)+..+(1^991)/(2^100)-1-1/(2^100)=1+1/2+1/2+…+1/2-1/(2^100)`
`<=>1+100.12-1/(2^100)`
`<=>50<50+1-1/(2^100)`
Vậy `50<A`