cho A=1.2.3 + 2.3.4 + … + n(n+1)(n+2). cmr 4A + 1 la 1 so chinh phuong 07/11/2021 Bởi Quinn cho A=1.2.3 + 2.3.4 + … + n(n+1)(n+2). cmr 4A + 1 la 1 so chinh phuong
Ta có: A=1.2.3 + 2.3.4 + … + n(n+1)(n+2) ⇔4A=1.2.3.4 + 2.3.4.4 + … + n(n+1)(n+2).4 ⇔4A=1.2.3.4 + 2.3.4.(5-1) + … + n(n+1)(n+2)[(n+3)-(n-1)] ⇔4A=1.2.3.4 + 2.3.4.5-1.2.3.4 + … + n(n+1)(n+2)(n+3) – (n-1)n(n+1)(n+2) ⇔4A= n(n+1)(n+2)(n+3) ⇔4A=(n²+3n)(n²+3n+2) ⇔4A= (n²+3n)² + 2(n²+3n) ⇔4A+1=(n²+3n)² + 2(n²+3n) +1 ⇔4A+1=(n²+3n+1)² là số chính phương. ⇒ đpcm Bình luận
Cách giải: $A=1.2.3+2.3.4+…….+n(n+1)(n+2)$ $\to 4A=1.2.3.4+2.3.4.4+…..+n(n+1)(n+2).4$ $\to 4A=1.2.3.4+2.3.4.(5-1)+…..+n(n+1)(n+2).[n+3-(n-1)]$ $\to 4A=1.2.3.4+2.3.4.5-1.2.3.4+…..+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)$ $\to 4A=n(n+1)(n+2)(n+3)$ $\to 4A+1=[(n+1)(n+2)][n(n+3)]+1$ $\to 4A+1=(n^2+3n+2)(n^2+3n)+1$ $\to 4A+1=(n^2+3n+1+1)(n^2+3n+1-1)+1$ $\to 4A+1=(n^2+3n+1)^2-1+1$ $\to 4A+1=(n^2+3n+1)^2$ là 1 số chính phương. Bình luận
Ta có: A=1.2.3 + 2.3.4 + … + n(n+1)(n+2)
⇔4A=1.2.3.4 + 2.3.4.4 + … + n(n+1)(n+2).4
⇔4A=1.2.3.4 + 2.3.4.(5-1) + … + n(n+1)(n+2)[(n+3)-(n-1)]
⇔4A=1.2.3.4 + 2.3.4.5-1.2.3.4 + … + n(n+1)(n+2)(n+3) – (n-1)n(n+1)(n+2)
⇔4A= n(n+1)(n+2)(n+3)
⇔4A=(n²+3n)(n²+3n+2)
⇔4A= (n²+3n)² + 2(n²+3n)
⇔4A+1=(n²+3n)² + 2(n²+3n) +1
⇔4A+1=(n²+3n+1)² là số chính phương. ⇒ đpcm
Cách giải:
$A=1.2.3+2.3.4+…….+n(n+1)(n+2)$
$\to 4A=1.2.3.4+2.3.4.4+…..+n(n+1)(n+2).4$
$\to 4A=1.2.3.4+2.3.4.(5-1)+…..+n(n+1)(n+2).[n+3-(n-1)]$
$\to 4A=1.2.3.4+2.3.4.5-1.2.3.4+…..+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)$
$\to 4A=n(n+1)(n+2)(n+3)$
$\to 4A+1=[(n+1)(n+2)][n(n+3)]+1$
$\to 4A+1=(n^2+3n+2)(n^2+3n)+1$
$\to 4A+1=(n^2+3n+1+1)(n^2+3n+1-1)+1$
$\to 4A+1=(n^2+3n+1)^2-1+1$
$\to 4A+1=(n^2+3n+1)^2$ là 1 số chính phương.