cho A=1+3+3^2+3^3+3^4+…+3^11.Chứng tỏ B chia hết cho 13,chia hết cho 40 09/07/2021 Bởi Parker cho A=1+3+3^2+3^3+3^4+…+3^11.Chứng tỏ B chia hết cho 13,chia hết cho 40
`A=1+3+3^2+3^3+3^4+….+3^11` `=(1+3+3^2)+(3^3+3^4+3^5)+…+(3^9+3^10+3^11)` `=(1+3+3^2)+3^3(1+3+3^2)+…+3^9(1+3+3^2)` `=13.1+3^{3}.13+3^{9}.13` `=13(1+3^3+…+3^9)` Vì `13\vdots13` `⇒13(1+3^3+…+3^9)\vdots13` `⇒A\vdots13` `A=1+3+3^2+3^3+3^4+….+3^11` `=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+(3^8+3^9+3^10+3^11)` `=(1+3^2+3^3)+3^4(3+3^2+3^3)+3^8(3+3^2+3^3)` `=40.1+3^{4}.40+3^{8}.40` `=40(1+3^4+3^8)` Vì `40\vdots40` `⇒40.1+3^4.40+3^8.40\vdots` `⇒A\vdots40` Bình luận
$A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$ $\to A = (1+3+3^2) + (3^3 + 3^4+3^5)+\dots + (3^9 + 3^{10} + 3^{11})$ $\to A = (1 + 3 + 3^2)+ 3^3(1 + 3 + 3^2) + \dots + 3^9(1 + 3 + 3^2)$ $\to A = (1 + 3 + 3^2)(1 + 3^3 +\dots +3^9)$ $\to A = 13.(1 + 3^3 +\dots +3^9)$ $\to A \quad \vdots \quad 13$ $A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$ $\to A = (1+3+3^2+ 3^3)+ (3^4+3^5 + 3^6 + 3^7)+ (3^8 +3^9 + 3^{10} + 3^{11})$ $\to A = (1+3+3^2+ 3^3) + 3^4(1+3+3^2+ 3^3) + 3^8(1+3+3^2+ 3^3)$ $\to A = (1+3+3^2+ 3^3)(1 + 3^4 + 3^8)$ $\to A = 40(1 + 3^4 + 3^8)$ $\to A \quad \vdots \quad 40$ Bình luận
`A=1+3+3^2+3^3+3^4+….+3^11`
`=(1+3+3^2)+(3^3+3^4+3^5)+…+(3^9+3^10+3^11)`
`=(1+3+3^2)+3^3(1+3+3^2)+…+3^9(1+3+3^2)`
`=13.1+3^{3}.13+3^{9}.13`
`=13(1+3^3+…+3^9)`
Vì `13\vdots13`
`⇒13(1+3^3+…+3^9)\vdots13`
`⇒A\vdots13`
`A=1+3+3^2+3^3+3^4+….+3^11`
`=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+(3^8+3^9+3^10+3^11)`
`=(1+3^2+3^3)+3^4(3+3^2+3^3)+3^8(3+3^2+3^3)`
`=40.1+3^{4}.40+3^{8}.40`
`=40(1+3^4+3^8)`
Vì `40\vdots40`
`⇒40.1+3^4.40+3^8.40\vdots`
`⇒A\vdots40`
$A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$
$\to A = (1+3+3^2) + (3^3 + 3^4+3^5)+\dots + (3^9 + 3^{10} + 3^{11})$
$\to A = (1 + 3 + 3^2)+ 3^3(1 + 3 + 3^2) + \dots + 3^9(1 + 3 + 3^2)$
$\to A = (1 + 3 + 3^2)(1 + 3^3 +\dots +3^9)$
$\to A = 13.(1 + 3^3 +\dots +3^9)$
$\to A \quad \vdots \quad 13$
$A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$
$\to A = (1+3+3^2+ 3^3)+ (3^4+3^5 + 3^6 + 3^7)+ (3^8 +3^9 + 3^{10} + 3^{11})$
$\to A = (1+3+3^2+ 3^3) + 3^4(1+3+3^2+ 3^3) + 3^8(1+3+3^2+ 3^3)$
$\to A = (1+3+3^2+ 3^3)(1 + 3^4 + 3^8)$
$\to A = 40(1 + 3^4 + 3^8)$
$\to A \quad \vdots \quad 40$