cho A=1+3+3^2+3^3+3^4+…+3^11.Chứng tỏ B chia hết cho 13,chia hết cho 40

cho A=1+3+3^2+3^3+3^4+…+3^11.Chứng tỏ B chia hết cho 13,chia hết cho 40

0 bình luận về “cho A=1+3+3^2+3^3+3^4+…+3^11.Chứng tỏ B chia hết cho 13,chia hết cho 40”

  1. `A=1+3+3^2+3^3+3^4+….+3^11`

    `=(1+3+3^2)+(3^3+3^4+3^5)+…+(3^9+3^10+3^11)`

    `=(1+3+3^2)+3^3(1+3+3^2)+…+3^9(1+3+3^2)`

    `=13.1+3^{3}.13+3^{9}.13`

    `=13(1+3^3+…+3^9)`

    Vì `13\vdots13`

    `⇒13(1+3^3+…+3^9)\vdots13`

    `⇒A\vdots13`

    `A=1+3+3^2+3^3+3^4+….+3^11`

    `=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+(3^8+3^9+3^10+3^11)`

    `=(1+3^2+3^3)+3^4(3+3^2+3^3)+3^8(3+3^2+3^3)`

    `=40.1+3^{4}.40+3^{8}.40`

    `=40(1+3^4+3^8)`

    Vì `40\vdots40`

    `⇒40.1+3^4.40+3^8.40\vdots`

    `⇒A\vdots40`

    Bình luận
  2. $A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$

    $\to A = (1+3+3^2) + (3^3 + 3^4+3^5)+\dots + (3^9 + 3^{10} + 3^{11})$

    $\to A = (1 + 3 + 3^2)+ 3^3(1 + 3 + 3^2) + \dots + 3^9(1 + 3 + 3^2)$

    $\to A = (1 + 3 + 3^2)(1 + 3^3 +\dots +3^9)$

    $\to A = 13.(1 + 3^3 +\dots +3^9)$

    $\to A \quad \vdots \quad 13$

    $A = 1 + 3 + 3^2 + 3^3 + 3^4 +\dots + 3^{11}$

    $\to A = (1+3+3^2+ 3^3)+ (3^4+3^5 + 3^6 + 3^7)+ (3^8 +3^9 + 3^{10} + 3^{11})$

    $\to A = (1+3+3^2+ 3^3) + 3^4(1+3+3^2+ 3^3) + 3^8(1+3+3^2+ 3^3)$

    $\to A = (1+3+3^2+ 3^3)(1 + 3^4 + 3^8)$

    $\to A = 40(1 + 3^4 + 3^8)$

    $\to A \quad \vdots \quad 40$

    Bình luận

Viết một bình luận