Cho A = 1-$\frac{1}{2}$ + $\frac{1}{3}$ – $\frac{1}{4}$ + … – $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$. B = $\frac{1}{1010}$ + $\fr

Cho A = 1-$\frac{1}{2}$ + $\frac{1}{3}$ – $\frac{1}{4}$ + … – $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$.
B = $\frac{1}{1010}$ + $\frac{1}{1011}$ +…+ $\frac{1}{2016}$ + $\frac{1}{2017}$ + $\frac{1}{2018}$.
Tính : ($A^{2017}$ – $B^{2017}$) $^{2018}$

0 bình luận về “Cho A = 1-$\frac{1}{2}$ + $\frac{1}{3}$ – $\frac{1}{4}$ + … – $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$. B = $\frac{1}{1010}$ + $\fr”

  1. Đáp án: 0

    Giải thích các bước giải:

    Ta có:

    A = 1 – $\frac{1}{2}$ + $\frac{1}{3}$ – $\frac{1}{4}$ + … – $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$ 

        = (1 + $\frac{1}{2}$ + $\frac{1}{3}$ + $\frac{1}{4}$ + … + $\frac{1}{2016}$ + $\frac{1}{2017}$ + $\frac{1}{2018}$) – 2. ($\frac{1}{2}$ + $\frac{1}{4}$ + … + $\frac{1}{2018}$)

        = (1 + $\frac{1}{2}$ + $\frac{1}{3}$ + $\frac{1}{4}$ + … + $\frac{1}{2016}$ + $\frac{1}{2017}$ + $\frac{1}{2018}$) – (1 + $\frac{1}{2}$ + … + $\frac{1}{1009}$)

        = $\frac{1}{1010}$ + $\frac{1}{1011}$ + $\frac{1}{1012}$ + … + $\frac{1}{2018}$ = B

    Vậy $A^{2017}$ = $B^{2017}$ ⇒ $(A^{2017} – B^{2017})^{2018}$ = 0.

    Bình luận

Viết một bình luận