cho A(2;1) ,B(3;1),C(-4;2).Xác định D sao cho ABDClà hình thang cân đáy AB 30/09/2021 Bởi Genesis cho A(2;1) ,B(3;1),C(-4;2).Xác định D sao cho ABDClà hình thang cân đáy AB
Phương trình đường thẳng AB: y = 1. ABDC là hình thang cân có đáy AB => AB // CD. => CD: y = a (a khác 1). Lại có: C(-4; 2) thuộc CD => a = 2 => CD: y = 2. Khi đó D(d; 2). Ta có: \(AB = \sqrt {{{\left( {3 – 2} \right)}^2} + {{\left( {1 – 1} \right)}^2}} = 1.\) ABDC là hình thang cân => AC = BD \(\begin{array}{l} \Leftrightarrow A{C^2} = B{D^2}\\ \Leftrightarrow {\left( { – 4 – 2} \right)^2} + {\left( {2 – 1} \right)^2} = {\left( {d – 3} \right)^2} + {\left( {2 – 1} \right)^2}\\ \Leftrightarrow {\left( {d – 3} \right)^2} = 36\\ \Leftrightarrow \left[ \begin{array}{l}d – 3 = 6\\d – 3 = – 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 9\\d = – 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}D\left( {9;\,\,2} \right)\\D\left( { – 3;\,\,2} \right)\end{array} \right..\end{array}\) Với \(D\left( {9;\,\,2} \right) \Rightarrow CD = \sqrt {{{\left( {9 + 4} \right)}^2} + {{\left( {2 – 2} \right)}^2}} = 13.\) \( \Rightarrow CD > AB \Rightarrow D\left( {9;\,\,2} \right)\,\) thỏa mãn bài toán. Với \(D\left( { – 3;\,\,2} \right) \Rightarrow DC = \sqrt {{{\left( { – 3 + 4} \right)}^2} + {{\left( {2 – 2} \right)}^2}} = 1 = AB\) \( \Rightarrow CD = AB \Rightarrow ABDC\) là hình bình hành. => D(-3; 2) không thỏa mãn. Bình luận
Phương trình đường thẳng AB: y = 1.
ABDC là hình thang cân có đáy AB
=> AB // CD.
=> CD: y = a (a khác 1).
Lại có: C(-4; 2) thuộc CD => a = 2 => CD: y = 2.
Khi đó D(d; 2).
Ta có: \(AB = \sqrt {{{\left( {3 – 2} \right)}^2} + {{\left( {1 – 1} \right)}^2}} = 1.\)
ABDC là hình thang cân => AC = BD
\(\begin{array}{l} \Leftrightarrow A{C^2} = B{D^2}\\ \Leftrightarrow {\left( { – 4 – 2} \right)^2} + {\left( {2 – 1} \right)^2} = {\left( {d – 3} \right)^2} + {\left( {2 – 1} \right)^2}\\ \Leftrightarrow {\left( {d – 3} \right)^2} = 36\\ \Leftrightarrow \left[ \begin{array}{l}d – 3 = 6\\d – 3 = – 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 9\\d = – 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}D\left( {9;\,\,2} \right)\\D\left( { – 3;\,\,2} \right)\end{array} \right..\end{array}\)
Với \(D\left( {9;\,\,2} \right) \Rightarrow CD = \sqrt {{{\left( {9 + 4} \right)}^2} + {{\left( {2 – 2} \right)}^2}} = 13.\)
\( \Rightarrow CD > AB \Rightarrow D\left( {9;\,\,2} \right)\,\) thỏa mãn bài toán.
Với \(D\left( { – 3;\,\,2} \right) \Rightarrow DC = \sqrt {{{\left( { – 3 + 4} \right)}^2} + {{\left( {2 – 2} \right)}^2}} = 1 = AB\)
\( \Rightarrow CD = AB \Rightarrow ABDC\) là hình bình hành.
=> D(-3; 2) không thỏa mãn.