Cho a=2+2^2+2^3+…+2^30.Chung to rang a+2=2^31 14/08/2021 Bởi Raelynn Cho a=2+2^2+2^3+…+2^30.Chung to rang a+2=2^31
a=2+2^2+2^3+…+2^30 ⇔ 2a=2^2+2^3+2^3+…+2^31 ⇔ 2a-a=a=(2^2+2^3+2^3+…+2^31)-(2+2^2+2^3+…+2^30) ⇔ a=2^31-2 ⇔ a+2=2^31 Vậy a+2=2^31 (ĐPCM) Bình luận
Ta có : $\begin{array}{l}a = 2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}\\ \Rightarrow 2.a = 2.\left( {2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}} \right)\\ \Rightarrow 2.a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}}\\ \Rightarrow 2.a – a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, – \left( {2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}} \right)\\ \Rightarrow a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}} – 2 – {2^2} – {2^3} – {2^4} – {2^5} – … – {2^{30}}\\ \Rightarrow a = {2^{31}} – 2\\ \Rightarrow a + 2 = {2^{31}} – 2 + 2\\ \Rightarrow a + 2 = {2^{31}}\end{array}$ Bình luận
a=2+2^2+2^3+…+2^30
⇔ 2a=2^2+2^3+2^3+…+2^31
⇔ 2a-a=a=(2^2+2^3+2^3+…+2^31)-(2+2^2+2^3+…+2^30)
⇔ a=2^31-2
⇔ a+2=2^31
Vậy a+2=2^31 (ĐPCM)
Ta có :
$\begin{array}{l}
a = 2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}\\
\Rightarrow 2.a = 2.\left( {2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}} \right)\\
\Rightarrow 2.a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}}\\
\Rightarrow 2.a – a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, – \left( {2 + {2^2} + {2^3} + {2^4} + {2^5} + … + {2^{30}}} \right)\\
\Rightarrow a = {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + … + {2^{31}} – 2 – {2^2} – {2^3} – {2^4} – {2^5} – … – {2^{30}}\\
\Rightarrow a = {2^{31}} – 2\\
\Rightarrow a + 2 = {2^{31}} – 2 + 2\\
\Rightarrow a + 2 = {2^{31}}
\end{array}$