cho A= 2+2 mũ 2 + 2 mũ 3 + …..+ 2 mũ 60 chứng minh A chia hết cho 3 ,7,42 16/10/2021 Bởi Jasmine cho A= 2+2 mũ 2 + 2 mũ 3 + …..+ 2 mũ 60 chứng minh A chia hết cho 3 ,7,42
Tham khảo Xét `A:` `A=2+2^2+2^3+…+2^{60}` `⇒A=(2+2^2)+(2^3+2^4)+…+(2^{59}+2^{60})` `⇒A=2.(1+2)+2^3(1+2)+…+2^{59}.(1+2)` `⇒A=2.3+2^3.3+…+2^{59}.3` `⇒A=3.(2+2^3+…+2^{59})` `⇒A \vdots 3` Xét `A` `A=2+2^2+2^3+…+2^{60}` `⇒A=(2+2^2+2^3)+….+(2^{58}+2^{59}+2^{60})` `⇒A=14+…+2^{57}.(2+2^2+2^3)` `⇒A=14+…+2^{57}.14` `⇒A=14.(1+..+2^{57})` `⇒A \vdots 7` (Vì `14 \vdots 7)` Có `A \vdots 3` `A \vdots 14` `⇒A \vdots 3.14=42` Bình luận
Tham khảo
Xét `A:`
`A=2+2^2+2^3+…+2^{60}`
`⇒A=(2+2^2)+(2^3+2^4)+…+(2^{59}+2^{60})`
`⇒A=2.(1+2)+2^3(1+2)+…+2^{59}.(1+2)`
`⇒A=2.3+2^3.3+…+2^{59}.3`
`⇒A=3.(2+2^3+…+2^{59})`
`⇒A \vdots 3`
Xét `A`
`A=2+2^2+2^3+…+2^{60}`
`⇒A=(2+2^2+2^3)+….+(2^{58}+2^{59}+2^{60})`
`⇒A=14+…+2^{57}.(2+2^2+2^3)`
`⇒A=14+…+2^{57}.14`
`⇒A=14.(1+..+2^{57})`
`⇒A \vdots 7` (Vì `14 \vdots 7)`
Có `A \vdots 3`
`A \vdots 14`
`⇒A \vdots 3.14=42`