cho A=3+3^2+3^3+…+3^100.tìm n sao cho 2×A+3=3^n 19/09/2021 Bởi Madelyn cho A=3+3^2+3^3+…+3^100.tìm n sao cho 2×A+3=3^n
Ta có: A = 3 + $3^{2}$ + $3^{3}$ +…+$3^{100}$ => 3A = $3^{2}$ + $3^{3}$ + $3^{4}$ +…+$3^{101}$ => 3A – A = $3^{101}$ – 3 Mà 2A + 3 = $3^{n}$ hay $3^{101}$ – 3 + 3 = $3^{n}$ => $3^{101}$ = $3^{n}$ => n = 101 Bình luận
$A=3+3^2+…+3^{100}$ $⇒3A=3^2+3^3+…+3^{101}$ $⇒3A-A=-1+3^{101}$ $⇒2A=3^{101}-3$ $⇒A=$$\frac{3^{101}-3}{2}$ $⇒2A+3=$$\frac{2.(3^{101}-3)}{2}+3$ $=3^{101}=3^n$ $⇒n=101$ Bình luận
Ta có: A = 3 + $3^{2}$ + $3^{3}$ +…+$3^{100}$
=> 3A = $3^{2}$ + $3^{3}$ + $3^{4}$ +…+$3^{101}$
=> 3A – A = $3^{101}$ – 3
Mà 2A + 3 = $3^{n}$
hay $3^{101}$ – 3 + 3 = $3^{n}$
=> $3^{101}$ = $3^{n}$
=> n = 101
$A=3+3^2+…+3^{100}$
$⇒3A=3^2+3^3+…+3^{101}$
$⇒3A-A=-1+3^{101}$
$⇒2A=3^{101}-3$
$⇒A=$$\frac{3^{101}-3}{2}$
$⇒2A+3=$$\frac{2.(3^{101}-3)}{2}+3$
$=3^{101}=3^n$
$⇒n=101$