$Cho$ $a,b,c>0$. $CM$ $\frac{a}{(b+c)²}$ + $\frac{b}{(a+c)²}$ + $\frac{c}{(a+b)²}$ ≥ $\frac{9}{4(a+b+c)}$

$Cho$ $a,b,c>0$. $CM$
$\frac{a}{(b+c)²}$ + $\frac{b}{(a+c)²}$ + $\frac{c}{(a+b)²}$ ≥ $\frac{9}{4(a+b+c)}$

0 bình luận về “$Cho$ $a,b,c>0$. $CM$ $\frac{a}{(b+c)²}$ + $\frac{b}{(a+c)²}$ + $\frac{c}{(a+b)²}$ ≥ $\frac{9}{4(a+b+c)}$”

  1. Đáp án:

     

    Giải thích các bước giải:

    Áp dụng BĐT Bunhiacopxki:

    $(a+b+c)\left(\dfrac{a}{(b+c)^2}+\dfrac{b}{(c+a)^2}+\dfrac{c}{(a+b)^2} \right) \geq \left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} \right)^2$ (1)

    Lại có:

    $\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} =\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc} $

    $⇒\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} \geq \dfrac{(a+b+c)^2}{2(ab+bc+ca)} \geq \dfrac{3(ab+bc+ca)}{2(ab+bc+ca)}$

    $⇒\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} \geq \dfrac{3}{2}$

    $⇒\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} \right)^2 \geq \dfrac{9}{4}$ (2)

    (1);(2) suy ra:

    $(a+b+c)\left(\dfrac{a}{(b+c)^2}+\dfrac{b}{(c+a)^2}+\dfrac{c}{(a+b)^2} \right) \geq \dfrac{9}{4}$

    $⇒\dfrac{a}{(b+c)^2}+\dfrac{b}{(c+a)^2}+\dfrac{c}{(a+b)^2} \geq \dfrac{9}{4(a+b+c)}$ (đpcm)

    Dấu “=” xảy ra khi $a=b=c$

    Bình luận

Viết một bình luận