cho `a/(b+c)+b/(c+a)+c/(a+b)=1` tính `P=a^2/(b+c)+b^2/(c+a)+c^2/(a+b)` 04/09/2021 Bởi Reese cho `a/(b+c)+b/(c+a)+c/(a+b)=1` tính `P=a^2/(b+c)+b^2/(c+a)+c^2/(a+b)`
Đáp án: $P=0$ Giải thích các bước giải: Ta có: $P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}$ $\to P=a\cdot \dfrac{a}{b+c}+b\cdot \dfrac{b}{c+a}+c\cdot \dfrac{c}{a+b}$ $\to P=a\cdot\left(\dfrac{a}{b+c}+1-1\right)+b\cdot \left(\dfrac{b}{c+a}+1-1\right)+c\cdot \left(\dfrac{c}{a+b}+1-1\right)$ $\to P=a\cdot\left(\dfrac{a+b+c}{b+c}-1\right)+b\cdot \left(\dfrac{a+b+c}{c+a}-1\right)+c\cdot \left(\dfrac{a+b+c}{a+b}-1\right)$ $\to P=a\cdot\dfrac{a+b+c}{b+c}-a+b\cdot \dfrac{a+b+c}{c+a}-b+c\cdot \dfrac{a+b+c}{a+b}-c$ $\to P=a\cdot\dfrac{a+b+c}{b+c}+b\cdot \dfrac{a+b+c}{c+a}+c\cdot \dfrac{a+b+c}{a+b}-\left(a+b+c\right)$ $\to P=\left(a+b+c\right)\cdot\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+ \dfrac{c}{a+b}\right)-\left(a+b+c\right)$ $\to P=\left(a+b+c\right)\cdot 1-\left(a+b+c\right)$ $\to P=0$ Bình luận
Đáp án: P=0 Giải thích các bước giải: a/(b+c)=1-b/(c+a)-c/(a+b) ⇒a²/(b+c)=a-ab/(c+a)-ac/(a+b) CMTT:b²/(c+a)=b-ab/(b+c)-bc(a+b) c²/(a+b)=c-ac/(b+c)-bc/(a+c) cộng lại ta có :p =(a+b+c)-(ab+bc)/(c+a)-(ac+bc)/(a+b)-(ab+ac)/(b+c) =(a+b+c)-b(a+c)/(a+c)-c(a+b)/(a+b)-a(b+c)/(b+c) =(a+b+c)-b-c-a =0 Bình luận
Đáp án: $P=0$
Giải thích các bước giải:
Ta có:
$P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}$
$\to P=a\cdot \dfrac{a}{b+c}+b\cdot \dfrac{b}{c+a}+c\cdot \dfrac{c}{a+b}$
$\to P=a\cdot\left(\dfrac{a}{b+c}+1-1\right)+b\cdot \left(\dfrac{b}{c+a}+1-1\right)+c\cdot \left(\dfrac{c}{a+b}+1-1\right)$
$\to P=a\cdot\left(\dfrac{a+b+c}{b+c}-1\right)+b\cdot \left(\dfrac{a+b+c}{c+a}-1\right)+c\cdot \left(\dfrac{a+b+c}{a+b}-1\right)$
$\to P=a\cdot\dfrac{a+b+c}{b+c}-a+b\cdot \dfrac{a+b+c}{c+a}-b+c\cdot \dfrac{a+b+c}{a+b}-c$
$\to P=a\cdot\dfrac{a+b+c}{b+c}+b\cdot \dfrac{a+b+c}{c+a}+c\cdot \dfrac{a+b+c}{a+b}-\left(a+b+c\right)$
$\to P=\left(a+b+c\right)\cdot\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+ \dfrac{c}{a+b}\right)-\left(a+b+c\right)$
$\to P=\left(a+b+c\right)\cdot 1-\left(a+b+c\right)$
$\to P=0$
Đáp án:
P=0
Giải thích các bước giải:
a/(b+c)=1-b/(c+a)-c/(a+b)
⇒a²/(b+c)=a-ab/(c+a)-ac/(a+b)
CMTT:b²/(c+a)=b-ab/(b+c)-bc(a+b)
c²/(a+b)=c-ac/(b+c)-bc/(a+c)
cộng lại ta có :p =(a+b+c)-(ab+bc)/(c+a)-(ac+bc)/(a+b)-(ab+ac)/(b+c)
=(a+b+c)-b(a+c)/(a+c)-c(a+b)/(a+b)-a(b+c)/(b+c)
=(a+b+c)-b-c-a
=0