Cho `a/c = c/b` chứng minh rằng: `(b^2 – a^2)/(a^2 + c^2) = (b – a)/a` 04/10/2021 Bởi Allison Cho `a/c = c/b` chứng minh rằng: `(b^2 – a^2)/(a^2 + c^2) = (b – a)/a`
Ta có: $\dfrac{a}{c}=\dfrac{c}{b}$$⇒ab=c^2$ $⇒a^2+c^2=ab+a^2=a(a+b)$ $b^2-a^2=(b-a)(a+b)$ $⇒\dfrac{b^2-a^2}{a^2+c^2}$ $=\dfrac{(b-a)(a+b)}{a.(a+b)}$ $=\dfrac{b-a}{a}$ (đpcm) Bình luận
Ta có: $\dfrac{a}{c}=\dfrac{c}{b}$
$⇒ab=c^2$
$⇒a^2+c^2=ab+a^2=a(a+b)$
$b^2-a^2=(b-a)(a+b)$
$⇒\dfrac{b^2-a^2}{a^2+c^2}$
$=\dfrac{(b-a)(a+b)}{a.(a+b)}$
$=\dfrac{b-a}{a}$ (đpcm)
Đây nhá