Cho : A= ($\frac{x-y}{\sqrt[]{x}- \sqrt[]{y}}$ – $\frac{x\sqrt[]{x}-y\sqrt[]{y}}{x-y}$): $\frac{x\sqrt[]{y}+y\sqrt[]{x}}{x+y+2\sqrt[]{xy}}$
a, Rút gọn A
b, Chứng minh 0 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho : A= ($ frac{x-y}{ sqrt[]{x}- sqrt[]{y}}$ - $ frac{x sqrt[]{x}-y sqrt[]{y}}{x-y}$): $ frac{x sqrt[]{y}+y sqrt[]{x}}{x+y+2 sqrt[]{xy}}$
a, Rút gọ", "text": "Cho : A= ($ frac{x-y}{ sqrt[]{x}- sqrt[]{y}}$ - $ frac{x sqrt[]{x}-y sqrt[]{y}}{x-y}$): $ frac{x sqrt[]{y}+y sqrt[]{x}}{x+y+2 sqrt[]{xy}}$ a, Rút gọn A b, Chứng minh 0
Đáp án:
a) A=1
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 0;y \ge 0;x \ne y\\
A = \left[ {\dfrac{{\left( {\sqrt x – \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)}}{{\sqrt x – \sqrt y }} – \dfrac{{\left( {\sqrt x – \sqrt y } \right)\left( {x + \sqrt {xy} + y} \right)}}{{\left( {\sqrt x – \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)}}} \right].\dfrac{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)}}\\
= \left( {\sqrt x + \sqrt y – \dfrac{{x + \sqrt {xy} + y}}{{\sqrt x + \sqrt y }}} \right).\dfrac{{\sqrt x + \sqrt y }}{{\sqrt {xy} }}\\
= \dfrac{{x + 2\sqrt {xy} + y – x – \sqrt {xy} – y}}{{\sqrt x + \sqrt y }}.\dfrac{{\sqrt x + \sqrt y }}{{\sqrt {xy} }}\\
= \dfrac{{\sqrt {xy} }}{{\sqrt x + \sqrt y }}.\dfrac{{\sqrt x + \sqrt y }}{{\sqrt {xy} }} = 1
\end{array}\)
( bạn xem lại đề nha rút gọn ra số thực b nhé )