cho ΔABC vuông tại A có góc c=30 độ, đường cao AH. trên đoạn HC lấy điểm D sao cho HD =HB a)cm ΔAHB= ΔAHD b)cm Δ ABD là Δ đều c)từ c kẻ CE vuông góc

cho ΔABC vuông tại A có góc c=30 độ, đường cao AH.
trên đoạn HC lấy điểm D sao cho HD =HB
a)cm ΔAHB= ΔAHD
b)cm Δ ABD là Δ đều
c)từ c kẻ CE vuông góc với đg thẳng ad(E ∈AD).cm DE=HB
d,từ D kẻ DF đg vuông góc với đg thẳng ac(F∈ AD),I là giao điểm của ce và ah.cm 3 điểm
I,D,F thẳng hàng

0 bình luận về “cho ΔABC vuông tại A có góc c=30 độ, đường cao AH. trên đoạn HC lấy điểm D sao cho HD =HB a)cm ΔAHB= ΔAHD b)cm Δ ABD là Δ đều c)từ c kẻ CE vuông góc”

  1. Đáp án:

     

    Giải thích các bước giải:

    Cho tam giác ABC vuông ở A có góc C =30 độ,đường cao AH.trên đoạn HC lấy điểm D sao cho HD=HB.từ C kẻ CE vuông góc với AD.c/m:
    a, tam giác ABD là tam giác đều
    b, AH=CE
    c, EH//AC
    ————
    a, xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
    đồng thời AH là đường trung tuyến( HD=HB)
    => tam giác ABD cân tại A(1)
    lại có tam gisc ABC vuông tại A, godc C=30 độ
    => góc B=90 độ-gócc
    =90-30 =60 độ(2)
    từ(1) (2)=> tam giác ABD đều

    cho mik xin câu trả lời hay nhất

    Bình luận

Viết một bình luận