cho C = ( √x – 2/x-1 – √x + 2/x+2 √x +1) . ( 1-x) ²/2 a) rút gọn C b) tìm x để C dương c) tìm GTLN củaC 31/07/2021 Bởi Raelynn cho C = ( √x – 2/x-1 – √x + 2/x+2 √x +1) . ( 1-x) ²/2 a) rút gọn C b) tìm x để C dương c) tìm GTLN củaC
Đáp án: $\begin{array}{l}a)Dkxd:x \ge 0;x \ne 1\\C = \left( {\dfrac{{\sqrt x – 2}}{{x – 1}} – \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 – x} \right)}^2}}}{2}\\ = \dfrac{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 1} \right) – \left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\dfrac{{{{\left( {x – 1} \right)}^2}}}{2}\\ = \dfrac{{x – \sqrt x – 2 – \left( {x + \sqrt x – 2} \right)}}{1}.\dfrac{{\sqrt x – 1}}{2}\\ = \left( { – 2\sqrt x } \right).\dfrac{{\sqrt x – 1}}{2}\\ = \sqrt x – x\\b)C > 0\\ \Rightarrow \sqrt x – x > 0\\ \Rightarrow \sqrt x \left( {1 – \sqrt x } \right) > 0\\ \Rightarrow \left\{ \begin{array}{l}1 – \sqrt x > 0\\x \ne 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}\sqrt x < 1\\x \ne 0\end{array} \right.\\ \Rightarrow x < 1;x \ne 0\\c)C = \sqrt x – x\\ = – \left( {x – \sqrt x } \right)\\ = – \left( {x – 2.\sqrt x .\dfrac{1}{2} + \dfrac{1}{4}} \right) + \dfrac{1}{4}\\ = – {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{1}{4} \le \dfrac{1}{4}\\ \Rightarrow GTLN:C = \dfrac{1}{4}\\Khi:x = \dfrac{1}{4}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x \ne 1\\
C = \left( {\dfrac{{\sqrt x – 2}}{{x – 1}} – \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 – x} \right)}^2}}}{2}\\
= \dfrac{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 1} \right) – \left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\dfrac{{{{\left( {x – 1} \right)}^2}}}{2}\\
= \dfrac{{x – \sqrt x – 2 – \left( {x + \sqrt x – 2} \right)}}{1}.\dfrac{{\sqrt x – 1}}{2}\\
= \left( { – 2\sqrt x } \right).\dfrac{{\sqrt x – 1}}{2}\\
= \sqrt x – x\\
b)C > 0\\
\Rightarrow \sqrt x – x > 0\\
\Rightarrow \sqrt x \left( {1 – \sqrt x } \right) > 0\\
\Rightarrow \left\{ \begin{array}{l}
1 – \sqrt x > 0\\
x \ne 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt x < 1\\
x \ne 0
\end{array} \right.\\
\Rightarrow x < 1;x \ne 0\\
c)C = \sqrt x – x\\
= – \left( {x – \sqrt x } \right)\\
= – \left( {x – 2.\sqrt x .\dfrac{1}{2} + \dfrac{1}{4}} \right) + \dfrac{1}{4}\\
= – {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{1}{4} \le \dfrac{1}{4}\\
\Rightarrow GTLN:C = \dfrac{1}{4}\\
Khi:x = \dfrac{1}{4}
\end{array}$