Cho đa thức f(x) = $x^{6}$ – $2021x^{5}$ – $2021x^{4}$ – $2021x^{3}$ – $2021x^{2}$ – $2021x$ + 2021 Tính f(2020)

Cho đa thức f(x) = $x^{6}$ – $2021x^{5}$ – $2021x^{4}$ – $2021x^{3}$ – $2021x^{2}$ – $2021x$ + 2021
Tính f(2020)

0 bình luận về “Cho đa thức f(x) = $x^{6}$ – $2021x^{5}$ – $2021x^{4}$ – $2021x^{3}$ – $2021x^{2}$ – $2021x$ + 2021 Tính f(2020)”

  1. Tham khảo

     Sửa:`f(x)=x^6-2021x^5+2021x^4-2021x^3+2021x^2-2021x+2021`

    `⇒f(2020)=2020^6-2021.2020^5+2021.2020^4-2021.2020^3+2021.2020^2-2021.2020+2021`

    `⇒f(2020)=2020^6-2020^6-2020^5+2020^5+2020^4-2020^4-2020^3+2020^3+2020^2-2020^2-2020+2020+1`

    `⇒f(2020)=(2020^6-2020^6)+(-2020^5+2020^5)+(2020^4-2020^4)+(-2020^3+2020^3)+(2020^2-2020^2)+(-2020+2020)+1`

    `⇒f(2020)=1`

    `\text{©CBT}`

    Bình luận
  2. Đáp án: $f(2020)=1$

     

    Giải thích các bước giải:

    Sửa lại đề:

    $f(x)=x^6-2021x^5+2021x^4-2021x^3+2021x^2-2021x+2021$

    $f(2020)=2020^6-2021.2020^5+2021.2020^4-2021.2020^3+2021.2020^2-2021.2020+2021$

    $=2020^6-2020.2020^5-2020^5+2020.2020^4+2020^4-2020.2020^3-2020^3+2020.2020^2+2020^2-2020.2020-2020+2020+1$

    $=2020^6-2020^6-2020^5+2020^5+2020^4-2020^4-2020^3+2020^3+2020^2-2020^2-2020+2020+1$

    $=1$

    Bình luận

Viết một bình luận