Cho $\frac{a+b+c}{b}$= $\frac{b+c-a}{c}$= $\frac{a-c+b}{a}$ Tính: A= $\frac{(a+c)(c-b)(b-a)}{abc}$ 28/08/2021 Bởi Parker Cho $\frac{a+b+c}{b}$= $\frac{b+c-a}{c}$= $\frac{a-c+b}{a}$ Tính: A= $\frac{(a+c)(c-b)(b-a)}{abc}$
Đáp án: $A=8$ hoặc $A=-1$ Giải thích các bước giải: Ta có: $\dfrac{a+b+c}{b}=\dfrac{b+c-a}{c}=\dfrac{a-c+b}{a}$ $\to 1+\dfrac{a+c}{b}=1+\dfrac{b-a}{c}=1+\dfrac{-c+b}{a}$ $\to \dfrac{a+c}{b}=\dfrac{b-a}{c}=\dfrac{-c+b}{a}$ $\to A=\dfrac{(a+c)(c-b)(b-a)}{abc}=-\dfrac{a+c}{b}.\dfrac{-c+b}{a}.\dfrac{b-a}{c}=-(\dfrac{a+c}{b})^3$ Lại có: $\dfrac{a+b+c}{b}=\dfrac{b+c-a}{c}=\dfrac{a-c+b}{a}=\dfrac{b+c-a+a-c+b}{c+a}=\dfrac{2b}{c+a}$ $\to (a+b+c)(a+c)=2b^2$ $\to (a+c)^2+b(a+c)=2b^2$ $\to (a+c)^2+b(a+c)-2b^2=0$ $\to (a+c)^2+2b(a+c)-b(a+c)-2b^2=0$ $\to (a+c+2b)(a+c)-b(a+c+2b)=0$ $\to (a+c+2b)(a+c-b)=0$ $\to a+c+2b=0$ $\to a+c=-2b$ $\to \dfrac{a+c}{b}=-2$ $\to A=-(-2)^3=8$ Hoặc $a+c-b=0\to a+c=b\to \dfrac{a+c}{b}=1$ $\to A=-1^3=-1$ Bình luận
Đáp án: $A=8$ hoặc $A=-1$
Giải thích các bước giải:
Ta có:
$\dfrac{a+b+c}{b}=\dfrac{b+c-a}{c}=\dfrac{a-c+b}{a}$
$\to 1+\dfrac{a+c}{b}=1+\dfrac{b-a}{c}=1+\dfrac{-c+b}{a}$
$\to \dfrac{a+c}{b}=\dfrac{b-a}{c}=\dfrac{-c+b}{a}$
$\to A=\dfrac{(a+c)(c-b)(b-a)}{abc}=-\dfrac{a+c}{b}.\dfrac{-c+b}{a}.\dfrac{b-a}{c}=-(\dfrac{a+c}{b})^3$
Lại có:
$\dfrac{a+b+c}{b}=\dfrac{b+c-a}{c}=\dfrac{a-c+b}{a}=\dfrac{b+c-a+a-c+b}{c+a}=\dfrac{2b}{c+a}$
$\to (a+b+c)(a+c)=2b^2$
$\to (a+c)^2+b(a+c)=2b^2$
$\to (a+c)^2+b(a+c)-2b^2=0$
$\to (a+c)^2+2b(a+c)-b(a+c)-2b^2=0$
$\to (a+c+2b)(a+c)-b(a+c+2b)=0$
$\to (a+c+2b)(a+c-b)=0$
$\to a+c+2b=0$
$\to a+c=-2b$
$\to \dfrac{a+c}{b}=-2$
$\to A=-(-2)^3=8$
Hoặc $a+c-b=0\to a+c=b\to \dfrac{a+c}{b}=1$
$\to A=-1^3=-1$