$\begin{array}{l}có:\dfrac{a}{c}=\dfrac{b}{d}\\↔\dfrac{a}{c}.\dfrac{b}{d}=(\dfrac{a}{c})^2=(\dfrac{b}{d})^2\\↔\dfrac{ac}{bc}=(\dfrac{a}{c})^2=(\dfrac{b}{d})^2\\↔\dfrac{ac}{bc}=\dfrac{a^2+b^2}{c^2+d^2}\\\underline{\text{CHÚC BẠN HỌC TỐT}}\\\end{array}$
Đáp án:
`(ac)/(bd)=(a^2+c^2)/(b^2+d^2)`
Giải thích các bước giải:
Ta có: `a/b=c/d`
`=>a/b*c/d=(a/b)^2=(c/d)^2`
`=>(ac)/(bd)=a^2/b^2=c^2/d^2`
`=>(ac)/(bd)=(a^2+c^2)/(b^2+d^2)(dpcm)`
Đáp án+Giải thích các bước giải:
$\begin{array}{l}có:\dfrac{a}{c}=\dfrac{b}{d}\\↔\dfrac{a}{c}.\dfrac{b}{d}=(\dfrac{a}{c})^2=(\dfrac{b}{d})^2\\↔\dfrac{ac}{bc}=(\dfrac{a}{c})^2=(\dfrac{b}{d})^2\\↔\dfrac{ac}{bc}=\dfrac{a^2+b^2}{c^2+d^2}\\\underline{\text{CHÚC BẠN HỌC TỐT}}\\\end{array}$