Cho góc nhọn xOy và K là 1 điểm thuộc tia phấn giác xOy.Kẻ K vuông góc vs Ox(A thuộc Ox),KB vuông góc vs Oy(B thuộc Oy)
a; chứng minh KA=KB
b;tam giác OAB là tam giác j? Vì sao
c; đường thẳng BK cắt Ox tại D, đt AK cắt Oy tại E.C/m KD=KE
đ;C/M OK vuông DE
Giải thích các bước giải:
a, ta có K là 1 điểm thuộc tia phân giác góc xOy
mà KA vuông góc với Ox và KB vuông góc với Oy (gt)
⇒ KA=KB (t/c tia phân giác của 1 góc)
b, Xét ΔOAK vuông tại A và Δ OBK vuông tại B có
OK là canh chung
góc AOK = góc BOK (gt)
⇒ 2 tam giác bằng nhau
⇒ OA = OB ( 2 cạnh tương ứng)
⇒ΔOAB cân tại O
c, Xét ΔAKD vuông tại A và Δ BKE vuông tại B
AK=BK (cmt)
góc AKD = góc BKE ( đối đỉnh)
⇒ 2 tam giác trên bằng nhau
⇒ KD = KE (đpcm)
d, ΔOAK =ΔOBK ⇒ góc OKA = góc OKB ( 2 góc tương ứng)
mà góc AKD = góc BKE ( đối đỉnh)
⇒ góc OKA + góc AKD = góc OKB + góc BKE ⇒ góc OKD = góc OKE
xét ΔOKD và OKE dễ thấy chúng bằng nhau theo th (g-c-g) ⇒ OD=OE ⇒ ΔODE cân tại O mà OK là phân giác góc DOE ⇒ OK là đường cao của DE ⇒ OK ⊥DE (đpcm)