cho hàm số y=(3m-1)x-2m
a)tìm m để đồ thị hàm số đi qua điểm (2;2)
b)tìm m để đồ thị hàm số song song với đường thẳng (d):y=3x+7
cho hàm số y=(3m-1)x-2m
a)tìm m để đồ thị hàm số đi qua điểm (2;2)
b)tìm m để đồ thị hàm số song song với đường thẳng (d):y=3x+7
Đáp án:
a) \(m = 1\).
b) \(m = \dfrac{4}{3}\).
Giải thích các bước giải:
\(y = \left( {3m – 1} \right)x – 2m\)
a) Đồ thị hàm số đi qua điểm \(\left( {2;2} \right)\).
\(\begin{array}{l} \Rightarrow 2 = \left( {3m – 1} \right).2 – 2m\\ \Rightarrow 2 = 6m – 2 – 2m\\ \Rightarrow 4 = 4m\\ \Rightarrow m = 1\end{array}\)
Vậy \(m = 1\).
b) Đồ thị hàm số song song với đường thẳng \(\left( d \right):\,\,y = 3x + 7\)
\( \Rightarrow \left\{ \begin{array}{l}3m – 1 = 3\\ – 2m \ne 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \dfrac{4}{3}\\m \ne – \dfrac{7}{2}\end{array} \right. \Leftrightarrow m = \dfrac{4}{3}\).
Vậy \(m = \dfrac{4}{3}\).
a/ ĐTHS đi qua (2;2)
$→2(3m-1)-2m=2$
$↔4m-2=2$
$↔m=1$
b/ ĐTHS song song (d)
$→\begin{cases}3m-1=2\\-2m\ne 7\end{cases}$
$↔\begin{cases}3m=3\\m\ne -\dfrac{7}{2}\end{cases}$
$↔\begin{cases}m=1(tm)\\m\ne -\dfrac{7}{2}\end{cases}$
$→m=1$