cho hệ phương trình x+my=2 (pt1) mx+y=m+1(pt2) Tìm m để phương trình có nghiệm duy nhất sao cho x+y<0 22/07/2021 Bởi Maria cho hệ phương trình x+my=2 (pt1) mx+y=m+1(pt2) Tìm m để phương trình có nghiệm duy nhất sao cho x+y<0
Đáp án:-3<m<-1 Giải thích các bước giải: Từ pt1 có x=2-my (*) thế vào pt2 ta được m(2-my)+y=m+1 → (1-m²)y = 1-m (3) Để hệ pt có nghiệm duy nhất thì 93) phải có nghiệm duy nhất ↔ 1-m² ∦ 0 ↔ m ∦ ±1 Từ pt3 có y = 1-m/1-m² = 1/1+m Khi đó x = 2 – m×1/1+m = 2+m/1+m Để x+y<0 thì 1/1+m + 2+m/1+m < 0 ↔-3<m<-1 Vậy … Bình luận
Đáp án:-3<m<-1
Giải thích các bước giải:
Từ pt1 có x=2-my (*) thế vào pt2 ta được m(2-my)+y=m+1 → (1-m²)y = 1-m (3)
Để hệ pt có nghiệm duy nhất thì 93) phải có nghiệm duy nhất ↔ 1-m² ∦ 0 ↔ m ∦ ±1
Từ pt3 có y = 1-m/1-m² = 1/1+m
Khi đó x = 2 – m×1/1+m = 2+m/1+m
Để x+y<0 thì 1/1+m + 2+m/1+m < 0
↔-3<m<-1
Vậy …