cho hình thang abcd (AB//CD) , AB=BC a) chứng minh CA là phân giác góc C b) vẽ AE//BC , E thộc CD chứng minh AC là trung trực BE; BE là trung trực của

cho hình thang abcd (AB//CD) , AB=BC
a) chứng minh CA là phân giác góc C
b) vẽ AE//BC , E thộc CD chứng minh AC là trung trực BE; BE là trung trực của AC

0 bình luận về “cho hình thang abcd (AB//CD) , AB=BC a) chứng minh CA là phân giác góc C b) vẽ AE//BC , E thộc CD chứng minh AC là trung trực BE; BE là trung trực của”

  1. Đáp án:

     

    Giải thích các bước giải:

     a/ Ta có AB = BC =>tam giác ABC cân tại A=> góc BAC = góc BCA
    Mà góc BAC = góc ACD nên góc ACD = góc BCA
    => CA là phân giác góc C
    b/ Ta có: AB // CE (hay AB // CD)
    và AE // BC (gt)
    => Tứ giác ABCE là hình bình hành
    Có AB = BC => Tứ giác ABCE là hình thoi
    => 2 đường chéo vuông góc và cắt nhau tại trung điểm của mỗi đường
    => AC là trung trực BE; BE là trung trực của AC
    Chúc bạn học tốt !!!

    Bình luận

Viết một bình luận