Cho m+2 có tổng số hạt là 34, số hạt mang điện tích âm ít hơn số hạt MANG ĐIỆN là 2 tìm tên m giải cụ thể với ạ 08/09/2021 Bởi Brielle Cho m+2 có tổng số hạt là 34, số hạt mang điện tích âm ít hơn số hạt MANG ĐIỆN là 2 tìm tên m giải cụ thể với ạ
Đáp án: \(Mg\) (magie) Giải thích các bước giải: Ion \(M^{2+}\) chứa 34 hạt. \( \to p + e + n = 34\) Vì từ \(M\) tạo ra ion \(M^{2+}\) mất đi 2e. Trong \(M\) ta có: \(p = e \) Thì trong \(M^{2+}\) \(p = e + 2\) \( \to 2e + 2 + n = 34\) Số hạt mang điện âm ít hơn không mang điện là 2. \( \to n – e = 2\) Giải được: \(p=12; e=10;n=2\). Với \(Z=p=12\) suy ra \(M\) là \(Mg\). Bình luận
-Vì tổng số hạt trong $M^{2+}$ là 34: $⇒p+e+n+2=34$ Mà $p=e$ ⇒$2e+n=32(1)$ -Vì số hạt mang điện tích âm < số hạt ko amng điện là 2: $⇒-e+n=2(2)$ -Từ (1) và (2),ta có hệ pt: $\left \{ {{2e+n=32} \atop {-e+n=2}} \right.$ $\left \{ {{e=10} \atop {n=12}} \right.$ $p=e+2=10+2=12$ $Z_M=p=12$ ⇒M là nguyên tố Magiê ($Mg$) Bình luận
Đáp án:
\(Mg\) (magie)
Giải thích các bước giải:
Ion \(M^{2+}\) chứa 34 hạt.
\( \to p + e + n = 34\)
Vì từ \(M\) tạo ra ion \(M^{2+}\) mất đi 2e.
Trong \(M\) ta có: \(p = e \)
Thì trong \(M^{2+}\)
\(p = e + 2\)
\( \to 2e + 2 + n = 34\)
Số hạt mang điện âm ít hơn không mang điện là 2.
\( \to n – e = 2\)
Giải được: \(p=12; e=10;n=2\).
Với \(Z=p=12\) suy ra \(M\) là \(Mg\).
-Vì tổng số hạt trong $M^{2+}$ là 34:
$⇒p+e+n+2=34$
Mà $p=e$ ⇒$2e+n=32(1)$
-Vì số hạt mang điện tích âm < số hạt ko amng điện là 2:
$⇒-e+n=2(2)$
-Từ (1) và (2),ta có hệ pt:
$\left \{ {{2e+n=32} \atop {-e+n=2}} \right.$ $\left \{ {{e=10} \atop {n=12}} \right.$
$p=e+2=10+2=12$
$Z_M=p=12$
⇒M là nguyên tố Magiê ($Mg$)