Cho M= 3^1+3^2+3^3+…+3^2019. Tìm x thuộc N để 2M+3= 3^3x+1 05/11/2021 Bởi Kennedy Cho M= 3^1+3^2+3^3+…+3^2019. Tìm x thuộc N để 2M+3= 3^3x+1
Bài làm : `M= 3^1+3^2+3^3+…+3^2019` `⇔3M=3^2+3^3+…+3^2020` `⇔2M=3^2020-3` `⇔2M+3=3^2020` `⇔3^(3x+1)=3^2020` `⇒3x+1=2020` `⇒3x=2019` `⇒x=673` Bình luận
$M$=$3^{1}$ +$3^{2}$+ $3^{3}$ +…+$3^{2019}$ $3M$=$3^{2}$+ $3^{3}$ +$3^{4}$ …+$3^{2020}$ ⇒$3M-M$=$3^{2020}$ -$3^{1}$ ⇒$2M$=$3^{2020}$ -$3^{1}$ ⇒$2M+3$=$3^{2020}$ Mà $2M+3$=$3^{3x+1}$ ⇒$3^{2020}$=$3^{3x+1}$ ⇒$2020$=$3x+1$ ⇒$x$=$673$ Bình luận
Bài làm :
`M= 3^1+3^2+3^3+…+3^2019`
`⇔3M=3^2+3^3+…+3^2020`
`⇔2M=3^2020-3`
`⇔2M+3=3^2020`
`⇔3^(3x+1)=3^2020`
`⇒3x+1=2020`
`⇒3x=2019`
`⇒x=673`
$M$=$3^{1}$ +$3^{2}$+ $3^{3}$ +…+$3^{2019}$
$3M$=$3^{2}$+ $3^{3}$ +$3^{4}$ …+$3^{2020}$
⇒$3M-M$=$3^{2020}$ -$3^{1}$
⇒$2M$=$3^{2020}$ -$3^{1}$
⇒$2M+3$=$3^{2020}$
Mà $2M+3$=$3^{3x+1}$
⇒$3^{2020}$=$3^{3x+1}$
⇒$2020$=$3x+1$
⇒$x$=$673$