Cho P= $\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+$ $\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{x}+1}+$ $\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$ Biết xyz=4.Tính $

Cho P= $\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+$ $\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{x}+1}+$ $\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$
Biết xyz=4.Tính $\sqrt{P}$

0 bình luận về “Cho P= $\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+$ $\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{x}+1}+$ $\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$ Biết xyz=4.Tính $”

  1. `P=(\sqrt{x})/(\sqrt{xy}+\sqrt{x}+2)+(\sqrt{y})/(\sqrt{yz}+\sqrt{y}+1)+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`

    `P=(\sqrt{x}\sqrt{z})/(\sqrt{z}(\sqrt{xy}+\sqrt{x}+2))+(\sqrt{y}\sqrt{xz})/(\sqrt{xz}(\sqrt{yz}+\sqrt{y}+1))+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`

    `P=(\sqrt{xz})/(\sqrt{xyz}+\sqrt{xz}+2\sqrt{z})+(\sqrt{xyz})/(\sqrt{xyz^2}+\sqrt{xyz}+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`

    `P=(\sqrt{xz})/(\sqrt{4}+\sqrt{xz}+2\sqrt{z})+(\sqrt{4})/(\sqrt{4*z}+\sqrt{4}+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`

    `P=(\sqrt{xz})/(2+\sqrt{xz}+2\sqrt{z})+(2)/(2\sqrt{z}+2+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`

    `P=(\sqrt{xz}+2+2\sqrt{z})/(\sqrt{xz}+2+2\sqrt{z}`

    `P=1`

    `⇒\sqrt{P} = \sqrt{1} = 1`

    Vậy `\sqrt{P} = 1`

    Bình luận
  2. Đáp án:

    $\sqrt{P}=1$

    Giải thích các bước giải:

    $P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$

    $=\dfrac{\sqrt{xz}}{\sqrt{xyz}+\sqrt{xz}+2\sqrt{z}}+\dfrac{\sqrt{xyz}}{\sqrt{xyz^2}+\sqrt{xyz}+\sqrt{xz}}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$

    $=\dfrac{\sqrt{xz}}{\sqrt{4}+\sqrt{xz}+2\sqrt{z}}+\dfrac{\sqrt{4}}{\sqrt{4.z}+\sqrt{4}+\sqrt{xz}}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}$

    $=\dfrac{\sqrt{xz}}{\sqrt{xz}+2+2\sqrt{z}}+\dfrac{2}{\sqrt{xz}+2+2\sqrt{z}}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2+2\sqrt{z}}$

    $=\dfrac{\sqrt{xz}+2+2\sqrt{z}}{\sqrt{xz}+2+2\sqrt{z}}$

    $=1$

    $⇒ \sqrt{P}=\sqrt{1}=1$

    Bình luận

Viết một bình luận