Cho p và p + 8 là số nguyên tố ( p>3). Chứng minh rằng 8P + 1 là hợp số 19/07/2021 Bởi Parker Cho p và p + 8 là số nguyên tố ( p>3). Chứng minh rằng 8P + 1 là hợp số
Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn) Với p > 3 : Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3. Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3. p là số nguyên tố (p>3) nên 8p không chia hết cho 3 Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số. Bình luận
Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn) Với p > 3 : Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3. Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3. p là số nguyên tố (p>3) nên 8p không chia hết cho 3 Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số.a Bình luận
Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn)
Với p > 3 :
Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3.
Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3.
p là số nguyên tố (p>3) nên 8p không chia hết cho 3
Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số.
Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn)
Với p > 3 :
Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3.
Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3.
p là số nguyên tố (p>3) nên 8p không chia hết cho 3
Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số.a