Cho parabol (P) có phương trình hàm số y = ax2 + bx + c . Xác định a, b, c biết (P) cắt trục tung tại điểm M(0;-3) và nhận điểm I(-1; -4) làm đỉnh

Cho parabol (P) có phương trình hàm số y = ax2 + bx + c . Xác định a, b, c biết (P) cắt trục tung tại điểm M(0;-3) và nhận điểm I(-1; -4) làm đỉnh

0 bình luận về “Cho parabol (P) có phương trình hàm số y = ax2 + bx + c . Xác định a, b, c biết (P) cắt trục tung tại điểm M(0;-3) và nhận điểm I(-1; -4) làm đỉnh”

  1. Đáp án:

    Giải thích các bước giải: (P) đi qua M(0;-3)=>c=-3(1)

    Tọa độ đỉnh (P) là $I(\frac{-b}{2a};\frac{4ac-b^{2}}{4a})$

    $=>\frac{-b}{2a}=-1;\frac{4ac-b^{2}}{4a}=-4$(2)

    Từ (1) và (2): a=1;b=2;c=-3

    Bình luận
  2. \[\begin{array}{l}
    M\left( {0; – 3} \right) \in \left( P \right): – 3 = a{.0^2} + b.0 + c \Rightarrow c = – 3\\
    I\left( { – 1; – 4} \right) \in \left( P \right) \Rightarrow \left\{ \begin{array}{l}
    – \dfrac{b}{{2a}} = – 1\\
    – 4 = a.{\left( { – 1} \right)^2} + b.\left( { – 1} \right) – 3
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    a = 1\\
    b = 2
    \end{array} \right.
    \end{array}\]
    Vậy $a=1;b=2;c=-3$

    Bình luận

Viết một bình luận