Cho phương: x ² -4mx+9(1-m) ²=0 (1) tìm m để phương trình (1) có 2 nghiệm $x_{1}$, $x_{2}$ thỏa $x_{1}$² + $x_{2}$² > 16 10/10/2021 Bởi Brielle Cho phương: x ² -4mx+9(1-m) ²=0 (1) tìm m để phương trình (1) có 2 nghiệm $x_{1}$, $x_{2}$ thỏa $x_{1}$² + $x_{2}$² > 16
Đáp án: 1<m<3 Giải thích các bước giải: Để pt có 2 nghiệm phân biệt thì: $\begin{array}{l}\Delta ‘ > 0\\ \Rightarrow {\left( {2m} \right)^2} – 9{\left( {1 – m} \right)^2} > 0\\ \Rightarrow 4{m^2} – 9{m^2} + 18m – 9 > 0\\ \Rightarrow 5{m^2} – 18m + 9 < 0\\ \Rightarrow 5{m^2} – 3m – 15m + 9 < 0\\ \Rightarrow \left( {5m – 3} \right)\left( {m – 3} \right) < 0\\ \Rightarrow \frac{3}{5} < m < 3\left( 1 \right)\\Theo\,Viet:\left\{ \begin{array}{l}{x_1} + {x_2} = 4m\\{x_1}{x_2} = 9{\left( {1 – m} \right)^2}\end{array} \right.\\x_1^2 + x_2^2 > 16\\ \Rightarrow {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} > 16\\ \Rightarrow {\left( {4m} \right)^2} – 2.9{\left( {1 – m} \right)^2} > 16\\ \Rightarrow 16{m^2} – 18{m^2} + 36m – 18 – 16 > 0\\ \Rightarrow 2{m^2} – 36m + 34 < 0\\ \Rightarrow {m^2} – 18m + 17 < 0\\ \Rightarrow \left( {m – 1} \right)\left( {m – 17} \right) < 0\\ \Rightarrow 1 < m < 17\left( 2 \right)\\Từ\,\left( 1 \right);\left( 2 \right) \Rightarrow 1 < m < 3\end{array}$ Bình luận
Đáp án: 1<m<3
Giải thích các bước giải:
Để pt có 2 nghiệm phân biệt thì:
$\begin{array}{l}
\Delta ‘ > 0\\
\Rightarrow {\left( {2m} \right)^2} – 9{\left( {1 – m} \right)^2} > 0\\
\Rightarrow 4{m^2} – 9{m^2} + 18m – 9 > 0\\
\Rightarrow 5{m^2} – 18m + 9 < 0\\
\Rightarrow 5{m^2} – 3m – 15m + 9 < 0\\
\Rightarrow \left( {5m – 3} \right)\left( {m – 3} \right) < 0\\
\Rightarrow \frac{3}{5} < m < 3\left( 1 \right)\\
Theo\,Viet:\left\{ \begin{array}{l}
{x_1} + {x_2} = 4m\\
{x_1}{x_2} = 9{\left( {1 – m} \right)^2}
\end{array} \right.\\
x_1^2 + x_2^2 > 16\\
\Rightarrow {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} > 16\\
\Rightarrow {\left( {4m} \right)^2} – 2.9{\left( {1 – m} \right)^2} > 16\\
\Rightarrow 16{m^2} – 18{m^2} + 36m – 18 – 16 > 0\\
\Rightarrow 2{m^2} – 36m + 34 < 0\\
\Rightarrow {m^2} – 18m + 17 < 0\\
\Rightarrow \left( {m – 1} \right)\left( {m – 17} \right) < 0\\
\Rightarrow 1 < m < 17\left( 2 \right)\\
Từ\,\left( 1 \right);\left( 2 \right) \Rightarrow 1 < m < 3
\end{array}$
Bạn xem hình