cho phương trình x^2 – 2(m-1)x – 2m=0 tìm m để x_1^2+x1 – x2 =5 – 2m 18/08/2021 Bởi Piper cho phương trình x^2 – 2(m-1)x – 2m=0 tìm m để x_1^2+x1 – x2 =5 – 2m
Đáp án:m=-0,59 Giải thích các bước giải: $\begin{array}{l}{x^2} – 2\left( {m – 1} \right)x – 2m = 0\\ \Rightarrow \Delta ‘ > 0\\ \Rightarrow {\left( {m – 1} \right)^2} + 2m > 0\\ \Rightarrow {m^2} + 1 > 0\left( {tmdk} \right)\\Theo\,Viet \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m – 1} \right)\\{x_1}{x_2} = – 2m\end{array} \right.\\x_1^2 – 2\left( {m – 1} \right){x_1} – 2m = 0\\ \Rightarrow x_1^2 = 2\left( {m – 1} \right){x_1} + 2m\\Do:x_1^2 + {x_1} – {x_2} = 5 – 2m\\ \Rightarrow 2\left( {m – 1} \right){x_1} + 2m + {x_1} – {x_2} = 5 – 2m\\ \Rightarrow 2m{x_1} – {x_1} + 2m – {x_2} = 5 – 2m\\ \Rightarrow 2m{x_1} – \left( {{x_1} + {x_2}} \right) = 5 – 4m\\ \Rightarrow 2m{x_1} – 2\left( {m – 1} \right) = 5 – 4m\\ \Rightarrow 2m{x_1} = 5 – 4m + 2m – 2\\ \Rightarrow 2m{x_1} = 3 – 2m\\ \Rightarrow {x_1} = \dfrac{{3 – 2m}}{{2m}}\left( {m \ne 0} \right)\\ \Rightarrow {x_2} = 2\left( {m – 1} \right) – \dfrac{{3 – 2m}}{{2m}}\\ = \dfrac{{4{m^2} – 4m – 3 + 2m}}{{2m}}\\ = \dfrac{{4{m^2} – 2m – 3}}{{2m}}\\Do:{x_1}{x_2} = 2m\\ \Rightarrow \dfrac{{3 – 2m}}{{2m}}.\dfrac{{4{m^2} – 2m – 3}}{{2m}} = 2m\\ \Rightarrow 12{m^2} – 6m – 9 – 8{m^3} + 4{m^2} + 6m = 8{m^3}\\ \Rightarrow 16{m^3} – 16{m^2} + 9 = 0\\ \Rightarrow m = – 0,59\left( {tmdk} \right)\end{array}$ Bình luận
Đáp án:m=-0,59
Giải thích các bước giải:
$\begin{array}{l}
{x^2} – 2\left( {m – 1} \right)x – 2m = 0\\
\Rightarrow \Delta ‘ > 0\\
\Rightarrow {\left( {m – 1} \right)^2} + 2m > 0\\
\Rightarrow {m^2} + 1 > 0\left( {tmdk} \right)\\
Theo\,Viet \Rightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = 2\left( {m – 1} \right)\\
{x_1}{x_2} = – 2m
\end{array} \right.\\
x_1^2 – 2\left( {m – 1} \right){x_1} – 2m = 0\\
\Rightarrow x_1^2 = 2\left( {m – 1} \right){x_1} + 2m\\
Do:x_1^2 + {x_1} – {x_2} = 5 – 2m\\
\Rightarrow 2\left( {m – 1} \right){x_1} + 2m + {x_1} – {x_2} = 5 – 2m\\
\Rightarrow 2m{x_1} – {x_1} + 2m – {x_2} = 5 – 2m\\
\Rightarrow 2m{x_1} – \left( {{x_1} + {x_2}} \right) = 5 – 4m\\
\Rightarrow 2m{x_1} – 2\left( {m – 1} \right) = 5 – 4m\\
\Rightarrow 2m{x_1} = 5 – 4m + 2m – 2\\
\Rightarrow 2m{x_1} = 3 – 2m\\
\Rightarrow {x_1} = \dfrac{{3 – 2m}}{{2m}}\left( {m \ne 0} \right)\\
\Rightarrow {x_2} = 2\left( {m – 1} \right) – \dfrac{{3 – 2m}}{{2m}}\\
= \dfrac{{4{m^2} – 4m – 3 + 2m}}{{2m}}\\
= \dfrac{{4{m^2} – 2m – 3}}{{2m}}\\
Do:{x_1}{x_2} = 2m\\
\Rightarrow \dfrac{{3 – 2m}}{{2m}}.\dfrac{{4{m^2} – 2m – 3}}{{2m}} = 2m\\
\Rightarrow 12{m^2} – 6m – 9 – 8{m^3} + 4{m^2} + 6m = 8{m^3}\\
\Rightarrow 16{m^3} – 16{m^2} + 9 = 0\\
\Rightarrow m = – 0,59\left( {tmdk} \right)
\end{array}$