Cho phương trình bậc hai x^2-2(m+1)x+4m=0 (1)(x là ẩn số) a)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 b)Tìm giá trị của m để

Cho phương trình bậc hai x^2-2(m+1)x+4m=0 (1)(x là ẩn số)
a)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2
b)Tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 thỏa mãn hệ thức $x^4_1+x^4_2=32$

0 bình luận về “Cho phương trình bậc hai x^2-2(m+1)x+4m=0 (1)(x là ẩn số) a)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 b)Tìm giá trị của m để”

  1. Giải thích các bước giải:

    a.Ta có:

    $x^2-2(m+1)x+4m=0$

    $\to x^2-2mx-2x+4m=0$

    $\to (x^2-2mx)-(2x-4m)=0$

    $\to x(x-2m)-2(x-2m)=0$

    $\to (x-2)(x-2m)=0$

    $\to x\in\{2,2m\}$

    Để phương trình có $2$ nghiệm phân biệt

    $\to 2m\ne 2\to m\ne 1$

    b.Từ câu a

    $\to$Để $x_1^4+x_2^4=32$

    $\to 2^4+(2m)^4=32$

    $\to 16+16m^4=32$

    $\to m^4=1$

    $\to m=\pm1$

    Bình luận

Viết một bình luận